Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Langmuir ; 34(38): 11559-11566, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30153731

RESUMEN

Drug release regimes must be controlled for the optimal therapeutic effect. Although it is relatively straightforward to create first-order release matrices, it can be challenging to avoid an initial burst. Matrices with zero-order profiles are perceived to be beneficial in many cases but are even more difficult to formulate. We describe the straightforward synthesis of elastomeric composites prepared from silicone in which the active substance is dispersed in glycerol. The release of glycerol-soluble actives from the films of these materials was shown to be tunable with respect to the order of release (zero- or first-order) simply by changing the glycerol content. Importantly, release from the elastomers showed no burst effect. The discrete glycerol domains embedded within a silicone matrix act as reservoirs for active substances. Upon contact with aqueous media, the active substances are released from the matrices exhibiting zero-order, near zero-order, or first-order release kinetics. Various parameters that could influence the release process, including glycerol content, glycerol domain size, or membrane thickness, are thoroughly investigated, elucidating guidelines for creating matrices capable of delivering the active substances at desired rates. Additionally, the composites proved to absorb significant amounts of liquid water (up to 1850% of sample mass), a feature that can be tuned by the manipulation of the composite structure.

3.
Macromol Rapid Commun ; : e1800383, 2018 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-30039539

RESUMEN

Dielectric elastomer transducers (actuators and generators) possess great commercial potential because they allow for novel transducer designs and applications due to-amongst others-their flexibility and low weight. On the other hand, the flexibility and inherent softness of dielectric elastomers also pose restrictions on their use, since the thin elastomers may undergo destructive deformations under large loads or in large electrical fields. In order to design better dielectric elastomers, it is crucial to understand the underlying phenomena of how thin and elastic dielectric elastomer films undergo electrical breakdown. This understanding will allow for the design of dielectric elastomers with high electrical breakdown strength and thus open up the use of films in transducers at higher electrical fields and forces. Here, the study couples intrinsic electrical breakdown strengths with well-described polymer and network characteristics, namely Kuhn parameters and cross-linking density. The universality of the developed model is illustrated by comparison over a wide range of silicone-based elastomers, such as prestretched elastomers and synthesized cross-linked bottlebrush polymers, representing both filled and unfilled elastomers. This study paves a robust way for the molecular design of elastomers into high-intrinsic electrical breakdown strength dielectric elastomers.

4.
Macromol Rapid Commun ; 37(5): 378-413, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26773231

RESUMEN

Silicone elastomers are promising materials for dielectric elastomer transducers (DETs) due to their superior properties such as high efficiency, reliability and fast response times. DETs consist of thin elastomer films sandwiched between compliant electrodes, and they constitute an interesting class of transducer due to their inherent lightweight and potentially large strains. For the field to progress towards industrial implementation, a leap in material development is required, specifically targeting longer lifetime and higher energy densities to provide more efficient transduction at lower driving voltages. In this review, the current state of silicone elastomers for DETs is summarised and critically discussed, including commercial elastomers, composites, polymer blends, grafted elastomers and complex network structures. For future developments in the field it is essential that all aspects of the elastomer are taken into account, namely dielectric losses, lifetime and the very often ignored polymer network integrity and stability.


Asunto(s)
Dimetilpolisiloxanos/química , Elastómeros de Silicona/química , Conductividad Eléctrica , Suministros de Energía Eléctrica , Electrodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...