Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Drug Deliv Rev ; 211: 115354, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38857762

RESUMEN

One of the key aspects of coping efficiently with complex pathological conditions is delivering the desired therapeutic compounds with precision in both space and time. Therefore, the focus on nuclear-targeted delivery systems has emerged as a promising strategy with high potential, particularly in gene therapy and cancer treatment. Here, we explore the design of supramolecular nanoassemblies as vehicles to deliver specific compounds to the nucleus, with the special focus on polymer and peptide-based carriers that expose nuclear localization signals. Such nanoassemblies aim at maximizing the concentration of genetic and therapeutic agents within the nucleus, thereby optimizing treatment outcomes while minimizing off-target effects. A complex scenario of conditions, including cellular uptake, endosomal escape, and nuclear translocation, requires fine tuning of the nanocarriers' properties. First, we introduce the principles of nuclear import and the role of nuclear pore complexes that reveal strategies for targeting nanosystems to the nucleus. Then, we provide an overview of cargoes that rely on nuclear localization for optimal activity as their integrity and accumulation are crucial parameters to consider when designing a suitable delivery system. Considering that they are in their early stages of research, we present various cargo-loaded peptide- and polymer nanoassemblies that promote nuclear targeting, emphasizing their potential to enhance therapeutic response. Finally, we briefly discuss further advancements for more precise and effective nuclear delivery.

2.
J Colloid Interface Sci ; 664: 338-348, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38479270

RESUMEN

Combination therapies demand co-delivery platforms with efficient entrapment of distinct payloads and specific delivery to cells and possibly organelles. Herein, we introduce the combination of two therapeutic modalities, gene and photodynamic therapy, in a purely peptidic platform. The simultaneous formation and cargo loading of the multi-micellar platform is governed by self-assembly at the nanoscale. The multi-micellar architecture of the nanocarrier and the positive charge of its constituent micelles offer controlled dual loading capacity with distinct locations for a hydrophobic photosensitizer (PS) and negatively charged antisense oligonucleotides (ASOs). Moreover, the nuclear localization signal (NLS) sequence built-in the peptide targets PS + ASO-loaded nanocarriers to the nucleus. Breast cancer cells treated with nanocarriers demonstrated photo-triggered enhancement of radical oxygen species (ROS) associated with increased cell death. Besides, delivery of ASO payloads resulted in up to 90 % knockdown of Bcl-2, an inhibitor of apoptosis that is overexpressed in more than half of all human cancers. Simultaneous delivery of PS and ASO elicited synergistic apoptosis to an extent that could not be reached by singly loaded nanocarriers or the free form of the drugs. Both, the distinct location of loaded compounds that prevents them from interfering with each other, and the highly efficient cellular delivery support the great potential of this versatile peptide platform in combination therapy.


Asunto(s)
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/genética , Neoplasias/tratamiento farmacológico , Apoptosis , Micelas , Línea Celular Tumoral
3.
Nano Lett ; 24(9): 2698-2704, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38408754

RESUMEN

Artificial organelles (AnOs) are in the spotlight as systems to supplement biochemical pathways in cells. While polymersome-based artificial organelles containing enzymes to reduce reactive oxygen species (ROS) are known, applications requiring control of their enzymatic activity and cell-targeting to promote intracellular ROS detoxification are underexplored. Here, we introduce advanced AnOs where the chemical composition of the membrane supports the insertion of pore-forming melittin, enabling molecular exchange between the AnO cavity and the environment, while the encapsulated lactoperoxidase (LPO) maintains its catalytic function. We show that H2O2 outside AnOs penetrates through the melittin pores and is rapidly degraded by the encapsulated enzyme. As surface attachment of cell-penetrating peptides facilitates AnOs uptake by cells, electron spin resonance revealed a remarkable enhancement in intracellular ROS detoxification by these cell-targeted AnOs compared to nontargeted AnOs, thereby opening new avenues for a significant reduction of oxidative stress in cells.


Asunto(s)
Células Artificiales , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Meliteno , Estrés Oxidativo
4.
Biomacromolecules ; 25(2): 754-766, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38267014

RESUMEN

As current chemo- and photodynamic cancer therapies are associated with severe side effects due to a lack of specificity and to systemic toxicity, innovative solutions in terms of targeting and controlled functionality are in high demand. Here, we present the development of a polymersome nanocarrier equipped with targeting molecules and loaded with photosensitizers for efficient uptake and light-activated cell killing. Polymersomes were self-assembled in the presence of photosensitizers from a mixture of nonfunctionalized and functionalized PDMS-b-PMOXA diblock copolymers, the latter designed for coupling with targeting ligands. By encapsulation inside the polymersomes, the photosensitizer Rose Bengal was protected, and its uptake into cells was mediated by the nanocarrier. Inhibitor of fibroblast activation protein α (FAPi), a ligand for FAP, was attached to the polymersomes' surface and improved their uptake in MCF-7 breast cancer cells expressing relatively high levels of FAP on their surface. Once internalized by MCF-7, irradiation of Rose Bengal-loaded FAPi-polymersomes generated reactive oxygen species at levels high enough to induce cell death. By combining photosensitizer encapsulation and specific targeting, polymersomes represent ideal candidates as therapeutic nanocarriers in cancer treatment.


Asunto(s)
Endopeptidasas , Proteínas de la Membrana , Fármacos Fotosensibilizantes , Polímeros , Humanos , Fármacos Fotosensibilizantes/farmacología , Polímeros/farmacología , Rosa Bengala/farmacología , Muerte Celular , Línea Celular Tumoral
5.
Adv Healthc Mater ; 11(23): e2202100, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36208079

RESUMEN

Cell-derived vesicles retain the cytoplasm and much of the native cell membrane composition. Therefore, they are attractive for investigations of membrane biophysics, drug delivery systems, and complex molecular factories. However, their fragility and aggregation limit their applications. Here, the mechanical properties and stability of giant plasma membrane vesicles (GPMVs) are enhanced by decorating them with a specifically designed diblock copolymer, cholesteryl-poly[2-aminoethyl methacrylate-b-poly(ethylene glycol) methyl ether acrylate]. When cross-linked, this polymer brush enhances the stability of the GPMVs. Furthermore, the pH-responsiveness of the copolymer layer allows for a controlled cargo loading/release, which may enable various bioapplications. Importantly, the cross-linked-copolymer GPMVs are not cytotoxic and preserve in vitro membrane integrity and functionality. This effective strategy to equip the cell-derived vesicles with stimuli-responsive cross-linkable copolymers is expected to open a new route to the stabilization of natural membrane systems and overcome barriers to biomedical applications.


Asunto(s)
Polímeros , Biofisica
6.
Biomater Sci ; 10(15): 4309-4323, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35771211

RESUMEN

The design of non-viral vectors that efficiently deliver genetic materials into cells, in particular to the nucleus, remains a major challenge in gene therapy and vaccine development. To tackle the problems associated with cellular uptake and nuclear targeting, here we introduce a delivery platform based on the self-assembly of an amphiphilic peptide carrying an N-terminal KRKR sequence that functions as a nuclear localization signal (NLS). By means of a single-step self-assembly process, the amphiphilic peptides afford the generation of NLS-functionalized multicompartment micellar nanostructures that can embed various oligonucleotides between their individual compartments. Detailed physicochemical, cellular and ultrastructural analyses demonstrated that integrating an NLS in the hydrophilic domain of the peptide along with tuning its hydrophobic domain led to self-assembled DNA-loaded multicompartment micelles (MCMs) with enhanced cellular uptake and nuclear translocation. We showed that the nuclear targeting ensued via the NLS interaction with the nuclear transport receptors of the karyopherin family. Importantly, we observed that the treatment of MCF-7 cells with NLS-MCMs loaded with anti-BCL2 antisense oligonucleotides resulted in up to 86% knockdown of BCL2, an inhibitor of apoptosis that is overexpressed in more than half of all human cancers. We envision that this platform can be used to efficiently entrap and deliver diverse genetic payloads to the nucleus and find applications in basic research and biomedicine.


Asunto(s)
Señales de Localización Nuclear , Oligonucleótidos , Transporte Activo de Núcleo Celular/genética , Núcleo Celular/metabolismo , Humanos , Micelas , Señales de Localización Nuclear/química , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Oligonucleótidos/metabolismo , Péptidos/química
7.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34445799

RESUMEN

Concerns associated with nanocarriers' therapeutic efficacy and side effects have led to the development of strategies to advance them into targeted and responsive delivery systems. Owing to their bioactivity and biocompatibility, peptides play a key role in these strategies and, thus, have been extensively studied in nanomedicine. Peptide-based nanocarriers, in particular, have burgeoned with advances in purely peptidic structures and in combinations of peptides, both native and modified, with polymers, lipids, and inorganic nanoparticles. In this review, we summarize advances on peptides promoting gene delivery systems. The efficacy of nucleic acid therapies largely depends on cell internalization and the delivery to subcellular organelles. Hence, the review focuses on nanocarriers where peptides are pivotal in ferrying nucleic acids to their site of action, with a special emphasis on peptides that assist anionic, water-soluble nucleic acids in crossing the membrane barriers they encounter on their way to efficient function. In a second part, we address how peptides advance nanoassembly delivery tools, such that they navigate delivery barriers and release their nucleic acid cargo at specific sites in a controlled fashion.


Asunto(s)
Portadores de Fármacos/química , Ácidos Nucleicos/química , Ácidos Nucleicos de Péptidos/química , Péptidos/química , Animales , Sistemas de Liberación de Medicamentos/métodos , Humanos , Nanomedicina/métodos , Nanopartículas/química
8.
Talanta ; 221: 121623, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33076151

RESUMEN

This study reports a novel impedimetric immunosensor for protein D detection in purified and bacterial (Haemophilus influenzae, Hi) samples. The detection was based on antigen recognition by anti-protein D antibodies (apD) immobilised at the maze-like boron-doped carbon nanowall electrodes (B:CNW). The B:CNW electrodes were synthesised, and their surface was characterised by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) methods. The sensor was prepared in a two-step procedure: apD were covalently linked on the previously modified B:CNW electrodes using diazonium salt. Modification steps were controlled by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) measurements. The immunosensor exhibited excellent electrochemical performance, stability, satisfactory sensitivities, and linear ranges for antigen detection. Protein D was detected down to 2.39 × 102fg/mL with a linear range extending from 3.37 × 10-11to 3.37 × 10-3µg/mL (in purified sample). Next, Hi's LOD was 5.20 × 102CFU/mL with a linear range of 8.39 × 101-8.39 × 103CFU/mL. Selectivity studies showed no reaction with negative samples as Streptococcus pyogenes, Streptococcus pneumoniae or Bordetella parapertussis bacteria. Therefore, the new approach is suitable for rapid and quantitative detection of Hi, and is a good candidate for further tests on clinical samples.


Asunto(s)
Técnicas Biosensibles , Boro , Carbono , Espectroscopía Dieléctrica , Técnicas Electroquímicas , Electrodos , Haemophilus influenzae , Inmunoensayo , Límite de Detección
10.
Nanoscale Adv ; 1(9): 3463-3473, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-36133550

RESUMEN

Advanced biodetection and bioimaging require fluorescent labels which exhibit many, easily distinguishable colors to identify or study numerous biotargets in a single sample. Although numerous different colors have been demonstrated with lanthanide doped nanoparticles, these colors usually originate from various ratios of overlapping multiple emission bands from activators, which severely limits the number of available labels. As a consequence, different lanthanide doped labels cannot be easily distinguished from each other (e.g. Er3+ from Ho3+) in a quantitative way, when such labels are co-localized during microscopy wide-field imaging. It is therefore reasonable to expand the available choice of spectral signatures and not rely on just different colors. Other ions, such as Tb3+ or Eu3+, can offer new possibilities and unique spectral features in upconversion mode in this respect. For example, despite partial overlap with Er3+ or Ho3+ emission spectra, Tb3+ ions display also unique and easily distinguishable spectral features at 580 nm. Unfortunately, in terms of brightness, Tb3+ emission in upconversion mode is typically too weak to be useful. To improve the Tb3+ upconversion emission intensity, a new approach, i.e. Mn2+ co-doping, has been proposed and verified in this work. A versatile optimization of Tb3+, Yb3+ and Mn2+ ion concentrations has been performed based on luminescence spectra and lifetime studies. The most intense emission was achieved for nanoparticles doped with 10% Mn2+ ions, with over 30 times brighter intensity of Tb3+ ions compared to the emission of nanocrystals without the addition of Mn2+ ions. Additionally, as a proof of the concept, the surface of nanoparticles was coated with proteins and conjugated with folic acid, and such biofunctionalized nanoparticles were subsequently used for bioimaging of HeLa cells.

11.
Postepy Hig Med Dosw (Online) ; 70: 367-79, 2016 Apr 27.
Artículo en Polaco | MEDLINE | ID: mdl-27117113

RESUMEN

Monoclonal antibodies (mAbs) are biomolecules of great scientific and practical significance. In contrast to polyclonal antibodies from immune sera, they are homogeneous and monospecific, since they are produced by hybridoma cells representing a clone arising from a single cell. The successful technology was described for the first time in 1975; the inventors were later awarded the Nobel Prize. Currently, mAbs are broadly used as a research tool, in diagnostics and medicine in particular for the treatment of cancer or in transplantology. About 47 therapeutics based on monoclonal antibodies are now available in the US and Europe, and the number is still growing. Production of monoclonal antibodies is a multistage, time-consuming and costly process. Growing demand for these molecules creates space for research focused on improvements in hybridoma technology. Lower costs, human labor, and time are important goals of these attempts. In this article, a brief review of current methods and their advances is given.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Formación de Anticuerpos/inmunología , Células Productoras de Anticuerpos/metabolismo , Hibridomas , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales/uso terapéutico , Europa (Continente) , Humanos , Hibridomas/citología , Hibridomas/inmunología , Hibridomas/metabolismo , Neoplasias/tratamiento farmacológico
12.
Postepy Hig Med Dosw (Online) ; 67: 1128-43, 2013 Nov 27.
Artículo en Polaco | MEDLINE | ID: mdl-24379254

RESUMEN

Vaccines are effective tools protecting against the development of infectious diseases caused by pathogenic microorganisms. Currently, we have vaccines protecting against many infections, where standard therapy is not only difficult but often impossible due to the ever-progressive increase in bacterial resistance to many available antibiotics. Among vaccines which have been used in the prevention of infection are the traditional vaccines containing live, killed or attenuated strains of microorganisms. However, it should be noted that such vaccines are not always effective, especially when the expected immune response is directed against specific antigens. Subunit vaccines belong to new generation vaccines and have gained more and more interest in recent years. These vaccines contain fragments of pathogenic microorganisms, which are highly purified and immunogenic antigens. Using these purified antigens excludes the risk of post-vaccination infection. In addition, subunit vaccines minimize side-effects associated with the use of whole bacterial cells. The paper discusses the most promising and the most tested antigens, vaccine carriers, conjugation methods and vaccine delivery systems which are being used in the design of subunit vaccines. This paper also highlights the advantages and disadvantages of adjuvants, which are substances to support the immune response in humans, and the relationship between adjuvants' efficacy and their mechanism of action.


Asunto(s)
Control de Enfermedades Transmisibles/métodos , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Antígenos Bacterianos/inmunología , Enfermedades Transmisibles/inmunología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...