Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Ecol Evol ; 8(4): 614-621, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38332025

RESUMEN

The Kunming-Montreal Global Biodiversity Framework (GBF) of the UN Convention on Biological Diversity set the agenda for global aspirations and action to reverse biodiversity loss. The GBF includes an explicit goal for maintaining and restoring biodiversity, encompassing ecosystems, species and genetic diversity (goal A), targets for ecosystem protection and restoration and headline indicators to track progress and guide action1. One of the headline indicators is the Red List of Ecosystems2, the global standard for ecosystem risk assessment. The Red List of Ecosystems provides a systematic framework for collating, analysing and synthesizing data on ecosystems, including their distribution, integrity and risk of collapse3. Here, we examine how it can contribute to implementing the GBF, as well as monitoring progress. We find that the Red List of Ecosystems provides common theory and practical data, while fostering collaboration, cross-sector cooperation and knowledge sharing, with important roles in 16 of the 23 targets. In particular, ecosystem maps, descriptions and risk categories are key to spatial planning for halting loss, restoration and protection (targets 1, 2 and 3). The Red List of Ecosystems is therefore well-placed to aid Parties to the GBF as they assess, plan and act to achieve the targets and goals. We outline future work to further strengthen this potential and improve biodiversity outcomes, including expanding spatial coverage of Red List of Ecosystems assessments and partnerships between practitioners, policy-makers and scientists.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Biodiversidad , Medición de Riesgo
2.
Sci Data ; 11(1): 191, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38346970

RESUMEN

Sub-Saharan Africa is under-represented in global biodiversity datasets, particularly regarding the impact of land use on species' population abundances. Drawing on recent advances in expert elicitation to ensure data consistency, 200 experts were convened using a modified-Delphi process to estimate 'intactness scores': the remaining proportion of an 'intact' reference population of a species group in a particular land use, on a scale from 0 (no remaining individuals) to 1 (same abundance as the reference) and, in rare cases, to 2 (populations that thrive in human-modified landscapes). The resulting bii4africa dataset contains intactness scores representing terrestrial vertebrates (tetrapods: ±5,400 amphibians, reptiles, birds, mammals) and vascular plants (±45,000 forbs, graminoids, trees, shrubs) in sub-Saharan Africa across the region's major land uses (urban, cropland, rangeland, plantation, protected, etc.) and intensities (e.g., large-scale vs smallholder cropland). This dataset was co-produced as part of the Biodiversity Intactness Index for Africa Project. Additional uses include assessing ecosystem condition; rectifying geographic/taxonomic biases in global biodiversity indicators and maps; and informing the Red List of Ecosystems.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Biodiversidad , Mamíferos , Vertebrados , Plantas , África
4.
Conserv Biol ; : e14169, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37650432

RESUMEN

Protected and conserved areas (PCAs) are key ecosystem management tools for conserving biodiversity and sustaining ecosystem services and social cobenefits. As countries adopt a 30% target for protection of land and sea under the Global Biodiversity Framework of the United Nations Convention on Biological Diversity, a critical question emerging is, which 30%? A risk-based answer to this question is that the 30% that returns the greatest reductions in risks of species extinction and ecosystem collapse should be protected. The International Union for Conservation of Nature (IUCN) Red List protocols provide practical methods for assessing these risks. All species, including humans, depend on the integrity of ecosystems for their well-being and survival. Africa is strategically important for ecosystem management due to convergence of high ecosystem diversity, intense pressures, and high levels of human dependency on nature. We reviewed the outcomes (e.g., applications of ecosystem red-list assessments to protected-area design, conservation planning, and management) of a symposium at the inaugural African Protected Areas Congress convened to discuss roles of the IUCN Red List of Ecosystems in the design and management of PCAs. Recent progress was made in ecosystem assessment, with 920 ecosystem types assessed against the IUCN Red List criteria across 21 countries. Although these ecosystems spanned a diversity of environments across the continent, the greatest thematic gaps were for freshwater, marine, and subterranean realms, and large geographic gaps existed in North Africa and parts of West and East Africa. Assessment projects were implemented by a diverse community of government agencies, nongovernmental organizations, and researchers. The assessments have influenced policy and management by informing extensions to and management of formal protected area networks supporting decision-making for sustainable development, and informing ecosystem conservation and threat abatement within boundaries of PCAs and in surrounding landscapes and seascapes. We recommend further integration of risk assessments in environmental policy and enhanced investment in ecosystem red-list assessment to fill current gaps.


Contribuciones de la Lista Roja de Ecosistemas de la UICN al diseño y manejo basados en riesgos de las áreas conservadas y protegidas en África Resumen Las áreas protegidas y conservadas (APC) son herramientas clave del manejo de ecosistemas para conservar la biodiversidad y mantener los servicios ambientales y los cobeneficios sociales. Conforme los países adoptan un objetivo de 30% para la protección del suelo y el mar bajo el Marco Mundial de Biodiversidad de la Convención sobre la Diversidad Biológica de las Naciones Unidas, surge una pregunta crítica: ¿cuál 30%? Una respuesta basada en riesgos a esta pregunta es que se debe proteger el 30% que rinda la mayor reducción del riesgo de extinción de especies y del colapso del ecosistema. Los protocolos de la Lista Roja de la Unión Internacional para la Conservación de la Naturaleza (UICN) proporcionan métodos prácticos para evaluar estos riesgos. Todas las especies, incluidos los humanos, dependen de la integridad de los ecosistemas para su bienestar y supervivencia. África tiene una importancia estratégica para el manejo de ecosistemas debido a la convergencia de una gran diversidad de ecosistemas, presiones intensas y un nivel elevado de dependencia del humano hacia la naturaleza. Revisamos los resultados (p. ej.: aplicaciones de las valoraciones de las listas rojas de ecosistemas al diseño de áreas protegidas, planeación de la conservación y manejo) de un simposio en el primer Congreso de Áreas Protegidas Africanas convocado para discutir el papel de la Lista Roja de Ecosistemas de la UICN en el diseño y manejo de las APC. Existen avances recientes en la evaluación de los ecosistemas, con 920 tipos de ecosistemas evaluados bajo los criterios de la Lista Roja de la UICN en 21 países. Mientras estos ecosistemas comprenden una diversidad de ambientes en todo el continente, los principales vacíos temáticos los encontramos para los dominios subterráneos, de agua dulce y marina, además de que existe un gran vacío geográfico en el norte de África y en partes del este y oeste africano. Los proyectos de evaluación fueron implementados por una comunidad diversa de agencias gubernamentales, organizaciones no gubernamentales e investigadores. La influencia de las evaluaciones sobre las políticas y el manejo se da con la información que proveen a las extensiones y el manejo de las redes de áreas protegidas formales, el apoyo para la toma de decisiones de desarrollo sustentable y la guía para la conservación de ecosistemas y el abatimiento de amenazas dentro de los límites de las APC y en los paisajes terrestres y marinos adyacentes. Recomendamos una mayor integración de las evaluaciones de riesgo dentro de las políticas ambientales y más inversión para las evaluaciones de lista roja de los ecosistemas cubrir los vacíos existentes.

5.
Ecol Evol ; 13(1): e9681, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36620413

RESUMEN

The updating and rethinking of vegetation classifications is important for ecosystem monitoring in a rapidly changing world, where the distribution of vegetation is changing. The general assumption that discrete and persistent plant communities exist that can be monitored efficiently, is rarely tested before undertaking a classification. Marion Island (MI) is comprised of species-poor vegetation undergoing rapid environmental change. It presents a unique opportunity to test the ability to discretely classify species-poor vegetation with recently developed objective classification techniques and relate it to previous classifications. We classified vascular species data of 476 plots sampled across MI, using Ward hierarchical clustering, divisive analysis clustering, non-hierarchical kmeans and partitioning around medoids. Internal cluster validation was performed using silhouette widths, Dunn index, connectivity of clusters and gap statistic. Indicator species analyses were also conducted on the best performing clustering methods. We evaluated the outputs against previously classified units. Ward clustering performed the best, with the highest average silhouette width and Dunn index, as well as the lowest connectivity. The number of clusters differed amongst the clustering methods, but most validation measures, including for Ward clustering, indicated that two and three clusters are the best fit for the data. However, all classification methods produced weakly separated, highly connected clusters with low compactness and low fidelity and specificity to clusters. There was no particularly robust and effective classification outcome that could group plots into previously suggested vegetation units based on species composition alone. The relatively recent age (c. 450,000 years B.P.), glaciation history (last glacial maximum 34,500 years B.P.) and isolation of the sub-Antarctic islands may have hindered the development of strong vascular plant species assemblages with discrete boundaries. Discrete classification at the community-level using species composition may not be suitable in such species-poor environments. Species-level, rather than community-level, monitoring may thus be more appropriate in species-poor environments, aligning with continuum theory rather than community theory.

6.
Nat Ecol Evol ; 5(10): 1338-1349, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34400825

RESUMEN

Despite substantial conservation efforts, the loss of ecosystems continues globally, along with related declines in species and nature's contributions to people. An effective ecosystem goal, supported by clear milestones, targets and indicators, is urgently needed for the post-2020 global biodiversity framework and beyond to support biodiversity conservation, the UN Sustainable Development Goals and efforts to abate climate change. Here, we describe the scientific foundations for an ecosystem goal and milestones, founded on a theory of change, and review available indicators to measure progress. An ecosystem goal should include three core components: area, integrity and risk of collapse. Targets-the actions that are necessary for the goals to be met-should address the pathways to ecosystem loss and recovery, including safeguarding remnants of threatened ecosystems, restoring their area and integrity to reduce risk of collapse and retaining intact areas. Multiple indicators are needed to capture the different dimensions of ecosystem area, integrity and risk of collapse across all ecosystem types, and should be selected for their fitness for purpose and relevance to goal components. Science-based goals, supported by well-formulated action targets and fit-for-purpose indicators, will provide the best foundation for reversing biodiversity loss and sustaining human well-being.


Asunto(s)
Ecosistema , Objetivos , Biodiversidad , Cambio Climático , Conservación de los Recursos Naturales , Humanos
7.
Ambio ; 49(6): 1211-1221, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31564051

RESUMEN

A horizon scan was conducted to identify emerging and intensifying issues for biodiversity conservation in South Africa over the next 5-10 years. South African biodiversity experts submitted 63 issues of which ten were identified as priorities using the Delphi method. These priority issues were then plotted along axes of social agreement and scientific certainty, to ascertain whether issues might be "simple" (amenable to solutions from science alone), "complicated" (socially agreed upon but technically complicated), "complex" (scientifically challenging and significant levels of social disagreement) or "chaotic" (high social disagreement and highly scientifically challenging). Only three of the issues were likely to be resolved by improved science alone, while the remainder require engagement with social, economic and political factors. Fortunately, none of the issues were considered chaotic. Nevertheless, strategic communication, education and engagement with the populace and policy makers were considered vital for addressing emerging issues.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Política , Sudáfrica
8.
Conserv Biol ; 33(6): 1235-1246, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30912598

RESUMEN

Systematic conservation planning is intended to inform spatially explicit decision making. Doing so requires that it be integrated into complex regulatory and governance processes, and there are limited instances where this has been achieved effectively. South Africa is a global leader in the application of conservation plans, the outputs of which are widely used for spatial planning and decision making in many spheres of government. We aimed to determine how conservation planning in the country progressed from theory to implementation, and to identify practical actions that enabled this transition, by assessing temporal trends in the characteristics of conservation plans (1990-2017, n = 94). Since 2010 conservation planning has entered an operational period characterized by government leadership of plans, administrative rather than ecological planning domains, decreasing size of planning units, increasing emphasis on end-user products, and scheduled revision of plans. Key actions that enabled this progression include transitioning leadership of plans from scientists to practitioners, building capacity within implementing agencies, creating opportunities to integrate plans in legislative processes, establishing a strong community of practice, adopting implementation-focused methods, and balancing standardization with innovation. Learning from this model will allow other countries, particularly those with a similar megadiverse, developing context, to operationalize conservation planning into spatial planning and decision making.


Acciones Prácticas para la Aplicación de la Planeación Sistemática de la Conservación Resumen La intención de la planeación sistemática de la conservación es informar la toma de decisiones espacialmente explícitas. Para lograr esto se requiere la integración de la planeación sistemática dentro de los complejos procesos regulatorios y de gobernanza. Actualmente existen instancias limitadas en las que lo anterior se ha conseguido de manera efectiva. Sudáfrica es un líder mundial en la aplicación de planes de conservación, cuyos resultados se utilizan ampliamente para la planeación espacial y la toma de decisiones en muchas esferas del gobierno. Buscamos determinar cómo la planeación de la conservación ha progresado en este país desde la teoría hasta la implementación e identificar las acciones prácticas que permitieron esta transición, esto mediante la evaluación de tendencias temporales en las características de los planes de conservación (1990-2017, n = 94). Desde 2010 la planeación de la conservación ha entrado en un periodo operativo caracterizado por el liderazgo gubernamental de los planes, dominios administrativos en lugar de dominios ecológicos, la reducción del tamaño de las unidades de planeación, el incremento del énfasis sobre los productos de usuario final y una revisión programada de los planes. Las acciones clave que permitieron esta progresión incluyen la transición del liderazgo de los planes de los científicos hacia los practicantes, el desarrollo de capacidades dentro de las agencias implementadoras, la creación de oportunidades para integrar los planes dentro de los procesos legislativos, el establecimiento de una comunidad de práctica fuerte, la adopción de métodos enfocados en la implementación y el balance entre la estandarización y la innovación. El aprendizaje que proporciona este modelo permitirá que otros países, particularmente aquellos con un contexto similar en cuanto al desarrollo y a la megadviversidad, conduzcan la planeación de la conservación hacia la planeación y la toma de decisiones espacialmente explícitas.


Asunto(s)
Conservación de los Recursos Naturales , Ecología , Biodiversidad , Toma de Decisiones , Gobierno , Sudáfrica
10.
Trends Ecol Evol ; 32(11): 814-824, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28890126

RESUMEN

In the Anthropocene, alien species are no longer the only category of biological organism establishing and rapidly spreading beyond historical boundaries. We review evidence showing that invasions by native species are a global phenomenon and present case studies from Southern Africa, and elsewhere, that reveal how climate-mediated expansions of native plants into adjacent communities can emulate the functional and structural changes associated with invasions by alien plant species. We conclude that integrating native invasions into ecological practice and theory will improve mechanistic models and better inform policy and adaptive ecological management in the 21st century.


Asunto(s)
Cambio Climático , Especies Introducidas , Dispersión de las Plantas , Biodiversidad , Ecosistema , Plantas
11.
Glob Chang Biol ; 23(6): 2358-2369, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27732761

RESUMEN

Increases in woody plant cover in savanna grassland environments have been reported on globally for over 50 years and are generally perceived as a threat to rangeland productivity and biodiversity. Despite this, few attempts have been made to estimate the extent of woodland increase at a national scale, principally due to technical constraints such as availability of appropriate remote sensing products. In this study, we aimed to measure the extent to which woodlands have replaced grasslands in South Africa's grassy biomes. We use multiseason Landsat data in conjunction with satellite L-band radar backscatter data to estimate the extent of woodlands and grasslands in 1990 and 2013. The method employed allows for a unique, nationwide measurement of transitions between grassland and woodland classes in recent decades. We estimate that during the 23-year study period, woodlands have replaced grasslands over ~57 000 km2 and conversely that grasslands have replaced woodlands over ~30 000 km2 , a net increase in the extent of woodland of ~27 000 km2 and an annual increase of 0.22%. The changes varied markedly across the country; areas receiving over 500 mm mean annual precipitation showed higher rates of woodland expansion than regions receiving <500 mm (0.31% yr-1 and 0.11% yr-1 , respectively). Protected areas with elephants showed clear loss of woodlands (-0.43% yr-1 ), while commercial rangelands and traditional rangelands showed increases in woodland extent (>0.19% yr-1 ). The woodland change map presented here provides a unique opportunity to test the numerous models of woody plant encroachment at a national/regional scale.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Poaceae , Ecosistema , Plantas , Dinámica Poblacional , Sudáfrica , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...