Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 615(7953): 687-696, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36356599

RESUMEN

T cell receptors (TCRs) enable T cells to specifically recognize mutations in cancer cells1-3. Here we developed a clinical-grade approach based on CRISPR-Cas9 non-viral precision genome-editing to simultaneously knockout the two endogenous TCR genes TRAC (which encodes TCRα) and TRBC (which encodes TCRß). We also inserted into the TRAC locus two chains of a neoantigen-specific TCR (neoTCR) isolated from circulating T cells of patients. The neoTCRs were isolated using a personalized library of soluble predicted neoantigen-HLA capture reagents. Sixteen patients with different refractory solid cancers received up to three distinct neoTCR transgenic cell products. Each product expressed a patient-specific neoTCR and was administered in a cell-dose-escalation, first-in-human phase I clinical trial ( NCT03970382 ). One patient had grade 1 cytokine release syndrome and one patient had grade 3 encephalitis. All participants had the expected side effects from the lymphodepleting chemotherapy. Five patients had stable disease and the other eleven had disease progression as the best response on the therapy. neoTCR transgenic T cells were detected in tumour biopsy samples after infusion at frequencies higher than the native TCRs before infusion. This study demonstrates the feasibility of isolating and cloning multiple TCRs that recognize mutational neoantigens. Moreover, simultaneous knockout of the endogenous TCR and knock-in of neoTCRs using single-step, non-viral precision genome-editing are achieved. The manufacture of neoTCR engineered T cells at clinical grade, the safety of infusing up to three gene-edited neoTCR T cell products and the ability of the transgenic T cells to traffic to the tumours of patients are also demonstrated.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Edición Génica , Neoplasias , Medicina de Precisión , Receptores de Antígenos de Linfocitos T , Linfocitos T , Transgenes , Humanos , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Biopsia , Tratamiento Basado en Trasplante de Células y Tejidos/efectos adversos , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Síndrome de Liberación de Citoquinas/complicaciones , Progresión de la Enfermedad , Encefalitis/complicaciones , Técnicas de Sustitución del Gen , Técnicas de Inactivación de Genes , Genes Codificadores de la Cadena alfa de los Receptores de Linfocito T , Genes Codificadores de la Cadena beta de los Receptores de Linfocito T , Mutación , Neoplasias/complicaciones , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/terapia , Seguridad del Paciente , Medicina de Precisión/efectos adversos , Medicina de Precisión/métodos , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Transgenes/genética , Antígenos HLA/inmunología , Sistemas CRISPR-Cas
2.
Mol Ther Methods Clin Dev ; 9: 99, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29601071

RESUMEN

[This corrects the article DOI: 10.1016/j.omtm.2017.09.001.].

3.
Mol Ther Methods Clin Dev ; 8: 1-7, 2018 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-29034262

RESUMEN

Lentiviral vectors are a common tool used to introduce new and corrected genes into cell therapy products for treatment of human diseases. Although lentiviral vectors are ideal for delivery and stable integration of genes of interest into the host cell genome, they potentially pose risks to human health, such as integration-mediated transformation and generation of a replication competent lentivirus (RCL) capable of infecting non-target cells. In consideration of the latter risk, all cell-based products modified by lentiviral vectors and intended for patient use must be tested for RCL prior to treatment of the patient. Current Food and Drug Administration (FDA) guidelines recommend use of cell-based assays to this end, which can take up to 6 weeks for results. However, qPCR-based assays are a quick alternative for rapid assessment of RCL in products intended for fresh infusion. We describe here the development and qualification of a qPCR assay based on detection of envelope gene sequences (vesicular stomatitis virus G glycoprotein [VSV-G]) for RCL in accordance with Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines. Our results demonstrate the sensitivity, linearity, specificity, and reproducibility of detection of VSV-G sequences, with a low false-positive rate. These procedures are currently being used in our phase 1 clinical investigations.

4.
BMC Mol Biol ; 17(1): 18, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27552991

RESUMEN

BACKGROUND: Serine-arginine rich splicing factor 2 (SRSF2) is a protein known for its role in RNA splicing and genome stability. It has been recently discovered that SRSF2, along with other splicing regulators, is frequently mutated in patients with myelodysplastic syndrome (MDS). The most common MDS mutations in SRSF2 occur at proline 95; the mutant proteins are shown to have different RNA binding preferences, which may contribute to splicing changes detected in mutant cells. However, the influence of these SRSF2 MDS-associated mutations on specific splicing events remains poorly understood. RESULTS: A tetracycline-inducible TF-1 erythroleukemia cell line was transduced with retroviruses to create cell lines expressing HA-tagged wildtype SRSF2, SRSF2 with proline 95 point mutations found in MDS, or SRSF2 with a deletion of one of the four major domains of the protein. Effects of these mutants on apoptosis and specific alternative splicing events were evaluated. Cells were also treated with DNA damaging drugs for comparison. MDS-related P95 point mutants of SRSF2 were expressed and phosphorylated at similar levels as wildtype SRSF2. However, cells expressing mutant SRSF2 exhibited higher levels of apoptosis than cells expressing wildtype SRSF2. Regarding alternative splicing events, in nearly all examined cases, SRSF2 P95 mutants acted in a similar fashion as the wildtype SRSF2. However, cells expressing SRSF2 P95 mutants had a percent increase in the C5 spliced isoform of cell division cycle 25C (CDC25C). The same alternative splicing of CDC25C was detected by treating cells with DNA damaging drugs, such as cisplatin, camptothecin, and trichostatin A at appropriate dosage. However, unlike DNA damaging drugs, SRSF2 P95 mutants did not activate the Ataxia telangiectasia mutated (ATM) pathway. CONCLUSION: SRSF2 P95 mutants lead to alternative splicing of CDC25C in a manner that is not dependent on the DNA damage response.


Asunto(s)
Empalme Alternativo , Síndromes Mielodisplásicos/genética , Mutación Puntual , Factores de Empalme Serina-Arginina/genética , Fosfatasas cdc25/genética , Línea Celular Tumoral , Daño del ADN , Reparación del ADN , Humanos
5.
Methods Mol Biol ; 1421: 1-13, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26965252

RESUMEN

SR proteins are a class of RNA-binding proteins whose RNA-binding ability is required for both constitutive and alternative splicing. While members of the SR protein family were once thought to have redundant functions, in-depth biochemical analysis of their RNA-binding abilities has revealed distinct binding profiles for each SR protein, that often lead to either synergistic or antagonistic functions. SR protein family members SRSF1 and SRSF2 are two of the most highly studied RNA-binding proteins. Here we examine the various methods used to differentiate SRSF1 and SRSF2 RNA-binding ability. We discuss the benefits and type of information that can be determined using each method.


Asunto(s)
ARN/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Animales , Cromatografía de Afinidad/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Resonancia Magnética Nuclear Biomolecular/métodos , ARN/análisis , ARN/genética , Técnica SELEX de Producción de Aptámeros/métodos , Factores de Empalme Serina-Arginina/análisis , Factores de Empalme Serina-Arginina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...