Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ann Clin Transl Neurol ; 10(10): 1873-1884, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37632130

RESUMEN

OBJECTIVE: Status epilepticus (SE) requires rapid intervention to prevent cerebral injury and mortality. The ketogenic diet, which bypasses glycolysis, is a promising remedy for patients with refractory SE. We tested the role of glycolytic lactate production in sustaining SE. METHODS: Extracellular lactate and glucose concentration during a seizure and SE in vivo was measured using lactate and glucose biosensors. A lactate dehydrogenase inhibitor, oxamate, blocked pyruvate to lactate conversion during SE. Video-EEG recordings evaluated seizure duration, severity, and immunohistochemistry was used to determine neuronal loss. Genetically encoded calcium indicator GCaMP7 was used to study the effect of oxamate on CA1 pyramidal neurons in vitro. Spontaneous excitatory postsynaptic currents (sEPSCs) were recorded from CA1 neurons to study oxamate's impact on neurotransmission. RESULTS: The extracellular glucose concentration dropped rapidly during seizures, and lactate accumulated in the extracellular space. Inhibition of pyruvate to lactate conversion with oxamate terminated SE in mice. There was less neuronal loss in treated compared to control mice. Oxamate perfusion decreased tonic and phasic neuronal activity of GCaMP7-expressing CA1 pyramidal neurons in vitro. Oxamate application reduced the frequency, but not amplitude of sEPSCs recorded from CA1 neurons, suggesting an effect on the presynaptic glutamatergic neurotransmission. INTERPRETATION: A single seizure and SE stimulate lactate production. Diminishing pyruvate to lactate conversion with oxamate terminated SE and reduced associated neuronal death. Oxamate reduced neuronal excitability and excitatory neurotransmission at the presynaptic terminal. Glycolytic lactate production sustains SE and is an attractive therapeutic target.


Asunto(s)
Ácido Láctico , Estado Epiléptico , Humanos , Ratones , Animales , Glucosa , Convulsiones , Glucólisis , Piruvatos
2.
Brain Res ; 1800: 148179, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36511312

RESUMEN

The tish (telencephalic internal structural heterotopia) rat is a naturally occurring and unique model of a malformation of cortical development (MCD) arising from a sponeantous mutation in the Eml1 gene. Tish rats are characterized by a macroscopic bilateral heterotopic dysplastic cortex (HDCx) and an overlaying, intact normotopic neocortex (NNCx). These two cortices are functional and have been reported to innervate and establish connections with subcortical regions including the thalamus, resulting in a dual-cortical representation. Additionally, impaired GABAergic neurotransmission and early-onset spike wave discharge bursts have been reported in developing tish rats. Perineuronal nets (PNNs) are specialized extraceullar matrix structures that predominately surround and stabilize parvalbumin-positive (PV+) GABAergic interneurons and are essential components of the neural landscape. Here, we report a significant reduction in the average number of WFA+-PNNs in the normotopic somatosensory cortex (NSSCx) of the tish rat at two developmental time points, P16 and P35, corresponding to a decrease in the number of PV+ interneurons ensheathed by a PNN in the NSSCx. Compared with control animals, PNN expression was partially, but significantly restored following treatment with insulin-like growth factor 1 (IGF-1). These data suggest that the 'dual cortical representation' in the setting of an MCD reduces the cortical activation necessary for proper PNN expression likely contributing to the impairments in GABAergic neurotransmission and network excitability previously identified in the tish rat.


Asunto(s)
Neocórtex , Corteza Somatosensorial , Ratas , Animales , Corteza Somatosensorial/metabolismo , Matriz Extracelular/metabolismo , Neocórtex/metabolismo , Transmisión Sináptica , Interneuronas/metabolismo , Parvalbúminas/metabolismo
3.
Brain ; 146(5): 1888-1902, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36346130

RESUMEN

Repetitively firing neurons during seizures accelerate glycolysis to meet energy demand, which leads to the accumulation of extracellular glycolytic by-product lactate. Here, we demonstrate that lactate rapidly modulates neuronal excitability in times of metabolic stress via the hydroxycarboxylic acid receptor type 1 (HCA1R) to modify seizure activity. The extracellular lactate concentration, measured by a biosensor, rose quickly during brief and prolonged seizures. In two epilepsy models, mice lacking HCA1R (lactate receptor) were more susceptible to developing seizures. Moreover, HCA1R deficient (knockout) mice developed longer and more severe seizures than wild-type littermates. Lactate perfusion decreased tonic and phasic activity of CA1 pyramidal neurons in genetically encoded calcium indicator 7 imaging experiments. HCA1R agonist 3-chloro-5-hydroxybenzoic acid (3CL-HBA) reduced the activity of CA1 neurons in HCA1R WT but not in knockout mice. In patch-clamp recordings, both lactate and 3CL-HBA hyperpolarized CA1 pyramidal neurons. HCA1R activation reduced the spontaneous excitatory postsynaptic current frequency and altered the paired-pulse ratio of evoked excitatory postsynaptic currents in HCA1R wild-type but not in knockout mice, suggesting it diminished presynaptic release of excitatory neurotransmitters. Overall, our studies demonstrate that excessive neuronal activity accelerates glycolysis to generate lactate, which translocates to the extracellular space to slow neuronal firing and inhibit excitatory transmission via HCA1R. These studies may identify novel anticonvulsant target and seizure termination mechanisms.


Asunto(s)
Ácido Láctico , Neuronas , Ratones , Animales , Neuronas/fisiología , Células Piramidales/fisiología , Ratones Noqueados , Convulsiones , Hipocampo
4.
Brain Res ; 1776: 147748, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34896333

RESUMEN

Whole-brain mapping is an effective approach to investigate which brain areas are activated by the exploration of a novel environment. Previous studies analyzing neuronal activity promoted by novelty focused mostly on one specific area instead of the whole brain and measured activation using cfos immunohistochemistry. In this study, we utilized TRAP2 mice exposed to a novel and familiar environment to examine neuronal activity in exploratory, learning, and memory circuits. We analyzed the behavior of mice during environment exploration. Brain tissue was processed using tissue clarification and neurons active during exploration of an environment were mapped based on the cfos expression. Neuronal activity after each experience were quantified in regions of interest. We observed increased exploratory behavior in mice exposed to a novel environment in comparison to familiar (170.5 s ± 6.47 vs. 112.5 s ± 9.54, p = 0.0001). Neuronal activity was significantly increased in the dentate gyrus (115.56 ± 53.84 vs. 32.24 ± 12.32, p = 0.02) during the exploration of a novel environment. Moreover, examination of the remaining regions of interest showed some increase in the number of active neurons in the novel condition, however, those differences were not statistically significant. Brief exposure to a novel environment results in increased exploratory behavior and significant neuronal activity in the dentate gyrus.


Asunto(s)
Giro Dentado/metabolismo , Conducta Exploratoria/fisiología , Neuronas/metabolismo , Animales , Mapeo Encefálico , Memoria/fisiología , Ratones , Neurogénesis/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo
5.
iScience ; 24(5): 102422, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-33997700

RESUMEN

Extended synaptotagmins (E-Syts) localize at membrane contact sites between the endoplasmic reticulum (ER) and the plasma membrane to mediate inter-membrane lipid transfer and control plasma membrane lipid homeostasis. All known E-Syts contain an N-terminal transmembrane (TM) hairpin, a central synaptotagmin-like mitochondrial lipid-binding protein (SMP) domain, and three or five C2 domains at their C termini. Here we report an uncharacterized E-Syt from the protist parasite Trypanosoma brucei, namely, TbE-Syt. TbE-Syt contains only two C2 domains (C2A and C2B), making it the shortest E-Syt known by now. We determined a 1.5-Å-resolution crystal structure of TbE-Syt-C2B and revealed that it binds lipids via both Ca2+- and PI(4,5)P2-dependent means. In contrast, TbE-Syt-C2A lacks the Ca2+-binding site but may still interact with lipids via a basic surface patch. Our studies suggest a mechanism for how TbE-Syt tethers the ER membrane tightly to the plasma membrane to transfer lipids between the two organelles.

6.
J Neurosci ; 41(11): 2318-2328, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33627325

RESUMEN

Neuromodulatory communication among various neurons and non-neuronal cells mediates myriad physiological and pathologic processes, yet defining regulatory and functional features of neuromodulatory transmission remains challenging because of limitations of available monitoring tools. Recently developed genetically encoded neuromodulatory transmitter sensors, when combined with superresolution and/or deconvolution microscopy, allow the first visualization of neuromodulatory transmission with nanoscale or microscale spatiotemporal resolution. In vitro and in vivo experiments have validated several high-performing sensors to have the qualities necessary for demarcating fundamental synaptic properties of neuromodulatory transmission, and initial analysis has unveiled unexpected fine control and precision of neuromodulation. These new findings underscore the importance of synaptic dynamics in synapse-, subcellular-, and circuit-specific neuromodulation, as well as the prospect of genetically encoded transmitter sensors in expanding our knowledge of various behaviors and diseases, including Alzheimer's disease, sleeping disorders, tumorigenesis, and many others.


Asunto(s)
Acetilcolina/fisiología , Monoaminas Biogénicas/fisiología , Comunicación Celular/genética , Neuronas/fisiología , Neurotransmisores/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Humanos
7.
J Vis Exp ; (160)2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32597865

RESUMEN

Hypoxia ischemia is the most common cause of neonatal seizures. Animal models are crucial for understanding the mechanisms and physiology underlying neonatal seizures and hypoxia ischemia. This manuscript describes a method for continuous video electroencephalogram (EEG) monitoring in neonatal mice to detect seizures and analyze EEG background during hypoxia ischemia. Use of video and EEG in conjunction allows description of seizure semiology and confirmation of seizures. This method also allows analysis of power spectrograms and EEG background pattern trends over the experimental time period. In this hypoxia ischemia model, the method allows EEG recording prior to injury to obtain a normative baseline and during injury and recovery. Total monitoring time is limited by the inability to separate pups from the mother for longer than four hours. Although, we have used a model of hypoxic-ischemic seizures in this manuscript, this method for neonatal video EEG monitoring could be applied to diverse disease and seizure models in rodents.


Asunto(s)
Electroencefalografía , Hipoxia-Isquemia Encefálica/diagnóstico por imagen , Hipoxia-Isquemia Encefálica/diagnóstico , Grabación en Video , Animales , Animales Recién Nacidos , Femenino , Ratones , Convulsiones/diagnóstico , Convulsiones/diagnóstico por imagen
8.
Ann Neurol ; 86(6): 927-938, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31509619

RESUMEN

OBJECTIVE: To identify circuits active during neonatal hypoxic-ischemic (HI) seizures and seizure propagation using electroencephalography (EEG), behavior, and whole-brain neuronal activity mapping. METHODS: Mice were exposed to HI on postnatal day 10 using unilateral carotid ligation and global hypoxia. EEG and video were recorded for the duration of the experiment. Using immediate early gene reporter mice, active cells expressing cfos were permanently tagged with reporter protein tdTomato during a 90-minute window. After 1 week, allowing maximal expression of the reporter protein, whole brains were processed, lipid cleared, and imaged with confocal microscopy. Whole-brain reconstruction and analysis of active neurons (colocalized tdTomato/NeuN) were performed. RESULTS: HI resulted in seizure behaviors that were bilateral or unilateral tonic-clonic and nonconvulsive in this model. Mice exhibited characteristic EEG background patterns such as burst suppression and suppression. Neuronal activity mapping revealed bilateral motor cortex and unilateral, ischemic somatosensory cortex, lateral thalamus, and hippocampal circuit activation. Immunohistochemical analysis revealed regional differences in myelination, which coincide with these activity patterns. Astrocytes and blood vessel endothelial cells also expressed cfos during HI. INTERPRETATION: Using a combination of EEG, seizure semiology analysis, and whole-brain neuronal activity mapping, we suggest that this rodent model of neonatal HI results in EEG patterns similar to those observed in human neonates. Activation patterns revealed in this study help explain complex seizure behaviors and EEG patterns observed in neonatal HI injury. This pattern may be, in part, secondary to regional differences in development in the neonatal brain. ANN NEUROL 2019;86:927-938.


Asunto(s)
Encéfalo/patología , Encéfalo/fisiopatología , Hipoxia-Isquemia Encefálica/patología , Hipoxia-Isquemia Encefálica/fisiopatología , Red Nerviosa/patología , Red Nerviosa/fisiopatología , Animales , Animales Recién Nacidos , Electroencefalografía/métodos , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos
9.
PLoS One ; 13(1): e0191012, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29320562

RESUMEN

Tumor-associated macrophages (TAMs) play a significant role in at least two key processes underlying neoplastic progression: angiogenesis and immune surveillance. TAMs phenotypic changes play important role in tumor vessel abnormalization/ normalization. M2-like TAMs stimulate immunosuppression and formation of defective tumor blood vessels leading to tumor progression. In contrast M1-like TAMs trigger immune response and normalize irregular tumor vascular network which should sensitize cancer cells to chemo- and radiotherapy and lead to tumor growth regression. Here, we demonstrated that combination of endoglin-based DNA vaccine with interleukin 12 repolarizes TAMs from tumor growth-promoting M2-like phenotype to tumor growth-inhibiting M1-like phenotype. Combined therapy enhances tumor infiltration by CD4+, CD8+ lymphocytes and NK cells. Depletion of TAMs as well as CD8+ lymphocytes and NK cells, but not CD4+ lymphocytes, reduces the effect of combined therapy. Furthermore, combined therapy improves tumor vessel maturation, perfusion and reduces hypoxia. It caused that suboptimal doses of doxorubicin reduced the growth of tumors in mice treated with combined therapy. To summarize, combination of antiangiogenic drug and immunostimulatory agent repolarizes TAMs phenotype from M2-like (pro-tumor) into M1-like (anti-tumor) which affects the structure of tumor blood vessels, improves the effect of chemotherapy and leads to tumor growth regression.


Asunto(s)
Interleucina-12/administración & dosificación , Macrófagos/fisiología , Melanoma Experimental/irrigación sanguínea , Melanoma Experimental/inmunología , Neovascularización Patológica/patología , Microambiente Tumoral/inmunología , Inhibidores de la Angiogénesis/administración & dosificación , Animales , Antibióticos Antineoplásicos/farmacología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Proliferación Celular/efectos de los fármacos , Doxorrubicina/farmacología , Femenino , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Macrófagos/efectos de los fármacos , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/inmunología , Células Tumorales Cultivadas , Vacunas de ADN/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...