Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Pediatr Nephrol ; 39(2): 383-395, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37400705

RESUMEN

The endogenous capacity of the kidney to repair is limited, and generation of new nephrons after injury for adequate function recovery remains a need. Discovery of factors that promote the endogenous regenerative capacity of the injured kidney or generation of transplantable kidney tissue represent promising therapeutic strategies. While several encouraging results are obtained after administration of stem or progenitor cells, stem cell secretome, or extracellular vesicles in experimental kidney injury models, very little data exist in the clinical setting to make conclusions about their efficacy. In this review, we provide an overview of the cutting-edge knowledge on kidney regeneration, including pre-clinical methodologies used to elucidate regenerative pathways and describe the perspectives of regenerative medicine for kidney patients.


Asunto(s)
Riñón , Nefrología , Niño , Humanos , Medicina Regenerativa/métodos , Regeneración , Células Madre/metabolismo
2.
Kidney Int ; 104(5): 995-1007, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37598857

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) resulting from pathogenic variants in PKD1 and PKD2 is the most common form of PKD, but other genetic causes tied to primary cilia function have been identified. Biallelic pathogenic variants in the serine/threonine kinase NEK8 cause a syndromic ciliopathy with extra-kidney manifestations. Here we identify NEK8 as a disease gene for ADPKD in 12 families. Clinical evaluation was combined with functional studies using fibroblasts and tubuloids from affected individuals. Nek8 knockout mouse kidney epithelial (IMCD3) cells transfected with wild type or variant NEK8 were further used to study ciliogenesis, ciliary trafficking, kinase function, and DNA damage responses. Twenty-one affected monoallelic individuals uniformly exhibited cystic kidney disease (mostly neonatal) without consistent extra-kidney manifestations. Recurrent de novo mutations of the NEK8 missense variant p.Arg45Trp, including mosaicism, were seen in ten families. Missense variants elsewhere within the kinase domain (p.Ile150Met and p.Lys157Gln) were also identified. Functional studies demonstrated normal localization of the NEK8 protein to the proximal cilium and no consistent cilia formation defects in patient-derived cells. NEK8-wild type protein and all variant forms of the protein expressed in Nek8 knockout IMCD3 cells were localized to cilia and supported ciliogenesis. However, Nek8 knockout IMCD3 cells expressing NEK8-p.Arg45Trp and NEK8-p.Lys157Gln showed significantly decreased polycystin-2 but normal ANKS6 localization in cilia. Moreover, p.Arg45Trp NEK8 exhibited reduced kinase activity in vitro. In patient derived tubuloids and IMCD3 cells expressing NEK8-p.Arg45Trp, DNA damage signaling was increased compared to healthy passage-matched controls. Thus, we propose a dominant-negative effect for specific heterozygous missense variants in the NEK8 kinase domain as a new cause of PKD.


Asunto(s)
Enfermedades Renales Poliquísticas , Riñón Poliquístico Autosómico Dominante , Animales , Humanos , Recién Nacido , Ratones , Proteínas Portadoras/metabolismo , Cilios/patología , Riñón/metabolismo , Mutación , Quinasas Relacionadas con NIMA/genética , Quinasas Relacionadas con NIMA/metabolismo , Enfermedades Renales Poliquísticas/genética , Riñón Poliquístico Autosómico Dominante/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/genética , Serina/metabolismo , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo
3.
Cell Death Discov ; 8(1): 477, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36460631

RESUMEN

Cilia are sensory organelles that project from the surface of almost all cells. Nephronophthisis (NPH) and NPH-related ciliopathies are degenerative genetic diseases caused by mutation of cilia-associated genes. These kidney disorders are characterized by progressive loss of functional tubular epithelial cells which is associated with inflammation, progressive fibrosis, and cyst formation, ultimately leading to end-stage renal disease. However, disease mechanisms remain poorly understood. Here, we show that targeted deletion of cilia in renal epithelial cells enhanced susceptibility to necroptotic cell death under inflammatory conditions. Treatment of non-ciliated cells with tumor necrosis factor (TNF) α and the SMAC mimetic birinapant resulted in Ripk1-dependent cell death, while viability of ciliated cells was almost not affected. Cell death could be enhanced and shifted toward necroptosis by the caspase inhibitor emricasan, which could be blocked by inhibitors of Ripk1 and Ripk3. Moreover, combined treatment of ciliated and non-ciliated cells with TNFα and cycloheximide induced a cell death response that could be partially rescued with emricasan in ciliated cells. In contrast, non-ciliated cells responded with pronounced cell death that was blocked by necroptosis inhibitors. Consistently, combined treatment with interferon-γ and emricasan induced cell death only in non-ciliated cells. Mechanistically, enhanced necroptosis induced by loss of cilia could be explained by induction of Ripk3 and increased abundance of autophagy components, including p62 and LC3 associated with the Ripk1/Ripk3 necrosome. Genetic ablation of cilia in renal tubular epithelial cells in mice resulted in TUNEL positivity and increased expression of Ripk3 in kidney tissue. Moreover, loss of Nphp1, the most frequent cause of NPH, further increased susceptibility to necroptosis in non-ciliated epithelial cells, suggesting that necroptosis might contribute to the pathogenesis of the disease. Together, these data provide a link between cilia-related signaling and cell death responses and shed new light on the disease pathogenesis of NPH-related ciliopathies.

4.
Adv Sci (Weinh) ; 9(20): e2200543, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35567354

RESUMEN

Pluripotent stem cell-derived kidney organoids offer a promising solution to renal failure, yet current organoid protocols often lead to off-target cells and phenotypic alterations, preventing maturity. Here, various dynamic hydrogel architectures are created, conferring a controlled and biomimetic environment for organoid encapsulation. How hydrogel stiffness and stress relaxation affect renal phenotype and undesired fibrotic markers are investigated. The authors observe that stiff hydrogel encapsulation leads to an absence of certain renal cell types and signs of an epithelial-mesenchymal transition (EMT), whereas encapsulation in soft, stress-relaxing hydrogels leads to all major renal segments, fewer fibrosis or EMT associated proteins, apical proximal tubule polarization, and primary cilia formation, representing a significant improvement over current approaches to culture kidney organoids. The findings show that engineering hydrogel mechanics and dynamics have a decided benefit for organoid culture. These structure-property-function relationships can enable the rational design of materials, bringing us closer to functional engraftments and disease-modeling applications.


Asunto(s)
Organoides , Células Madre Pluripotentes , Transición Epitelial-Mesenquimal , Hidrogeles , Riñón
5.
PLoS One ; 14(5): e0216705, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31095607

RESUMEN

The cilium is an essential organelle at the surface of mammalian cells whose dysfunction causes a wide range of genetic diseases collectively called ciliopathies. The current rate at which new ciliopathy genes are identified suggests that many ciliary components remain undiscovered. We generated and rigorously analyzed genomic, proteomic, transcriptomic and evolutionary data and systematically integrated these using Bayesian statistics into a predictive score for ciliary function. This resulted in 285 candidate ciliary genes. We generated independent experimental evidence of ciliary associations for 24 out of 36 analyzed candidate proteins using multiple cell and animal model systems (mouse, zebrafish and nematode) and techniques. For example, we show that OSCP1, which has previously been implicated in two distinct non-ciliary processes, causes ciliogenic and ciliopathy-associated tissue phenotypes when depleted in zebrafish. The candidate list forms the basis of CiliaCarta, a comprehensive ciliary compendium covering 956 genes. The resource can be used to objectively prioritize candidate genes in whole exome or genome sequencing of ciliopathy patients and can be accessed at http://bioinformatics.bio.uu.nl/john/syscilia/ciliacarta/.


Asunto(s)
Cilios/genética , Genómica , Animales , Teorema de Bayes , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Anotación de Secuencia Molecular , Fenotipo , Reproducibilidad de los Resultados , Células Receptoras Sensoriales/metabolismo , Pez Cebra/genética
6.
Kidney Int ; 95(4): 846-858, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30770218

RESUMEN

Recent human genetic studies have suggested an intriguing link between ciliary signaling defects and altered DNA damage responses in nephronophthisis (NPH) and related ciliopathies. However, the molecular mechanism and the role of altered DNA damage response in kidney degeneration and fibrosis have remained elusive. We recently identified the kinase-regulated DNA damage response target Apoptosis Antagonizing Transcription Factor (AATF) as a master regulator of the p53 response. Here, we characterized the phenotype of mice with genetic deletion of Aatf in tubular epithelial cells. Mice were born without an overt phenotype, but gradually developed progressive kidney disease. Histology was notable for severe tubular atrophy and interstitial fibrosis as well as cysts at the corticomedullary junction, hallmarks of human nephronophthisis. Aatf deficiency caused ciliary defects as well as an accumulation of DNA double strand breaks. In addition to its role as a p53 effector, we found that AATF suppressed RNA:DNA hybrid (R loop) formation, a known cause of DNA double strand breaks, and enabled DNA double strand break repair in vitro. Genome-wide transcriptomic analysis of Aatf deficient tubular epithelial cells revealed several deregulated pathways that could contribute to the nephronophthisis phenotype, including alterations in the inflammatory response and anion transport. These results suggest that AATF is a regulator of primary cilia and a modulator of the DNA damage response, connecting two pathogenetic mechanisms in nephronophthisis and related ciliopathies.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Cilios/patología , Roturas del ADN de Doble Cadena , Enfermedades Renales Quísticas/genética , Túbulos Renales/patología , Proteínas Nucleares/metabolismo , Animales , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/genética , Biopsia , Línea Celular Tumoral , Cilios/genética , Modelos Animales de Enfermedad , Células Epiteliales/citología , Células Epiteliales/patología , Fibrosis , Humanos , Enfermedades Renales Quísticas/patología , Túbulos Renales/citología , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Cultivo Primario de Células , Estructuras R-Loop/genética , Proteínas Represoras/metabolismo , Transducción de Señal/genética
7.
Sci Rep ; 8(1): 11042, 2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-30038331

RESUMEN

Fabry disease is a lysosomal storage disorder resulting from impaired alpha-galactosidase A (α-Gal A) enzyme activity due to mutations in the GLA gene. Currently, powerful diagnostic tools and in vivo research models to study Fabry disease are missing, which is a major obstacle for further improvements in diagnosis and therapy. Here, we explore the utility of urine-derived primary cells of Fabry disease patients. Viable cells were isolated and cultured from fresh urine void. The obtained cell culture, modeling the renal epithelium, is characterized by patient-specific information. We demonstrate that this non-invasive source of patient cells provides an adequate cellular in vivo model as cells exhibit decreased α-Gal A enzyme activity and concomitant globotriaosylceramide accumulation. Subsequent quantitative proteomic analyses revealed dysregulation of endosomal and lysosomal proteins indicating an involvement of the Coordinated Lysosomal Expression and Regulation (CLEAR) network in the disease pathology. This proteomic pattern resembled data from our previously described human podocyte model of Fabry disease. Taken together, the employment of urine-derived primary cells of Fabry disease patients might have diagnostic and prognostic implications in the future. Our findings pave the way towards a more detailed understanding of pathophysiological mechanisms and may allow the development of future tailored therapeutic strategies.


Asunto(s)
Enfermedad de Fabry/diagnóstico , Enfermedad de Fabry/orina , Orina/citología , Adulto , Anciano , Enfermedad de Fabry/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteómica/métodos , Trihexosilceramidas/metabolismo , alfa-Galactosidasa/metabolismo
8.
Am J Med Genet A ; 170(6): 1566-9, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26892345

RESUMEN

We report an 11-year-old girl with mild intellectual disability, skeletal anomalies, congenital heart defect, myopia, and facial dysmorphisms including an extra incisor, cup-shaped ears, and a preauricular skin tag. Array comparative genomic hybridization analysis identified a de novo 4.5-Mb microdeletion on chromosome 14q24.2q24.3. The deleted region and phenotype partially overlap with previously reported patients. Here, we provide an overview of the literature on 14q24 microdeletions and further delineate the associated phenotype. We performed exome sequencing to examine other causes for the phenotype and queried genes present in the 14q24.2q24.3 microdeletion that are associated with recessive disease for variants in the non-deleted allele. The deleted region contains 65 protein-coding genes, including the ciliary gene IFT43. Although Sanger and exome sequencing did not identify variants in the second IFT43 allele or in other IFT complex A-protein-encoding genes, immunocytochemistry showed increased accumulation of IFT-B proteins at the ciliary tip in patient-derived fibroblasts compared to control cells, demonstrating defective retrograde ciliary transport. This could suggest a ciliary defect in the pathogenesis of this disorder. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proteínas Portadoras/genética , Deleción Cromosómica , Cromosomas Humanos Par 14 , Cardiopatías Congénitas/genética , Discapacidad Intelectual/genética , Miopía/genética , Fenotipo , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Niño , Hibridación Genómica Comparativa , Exoma , Femenino , Fibroblastos/metabolismo , Expresión Génica , Estudios de Asociación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
9.
Tissue Eng Part B Rev ; 22(1): 58-67, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26414174

RESUMEN

Tissue-engineered grafts for cardiovascular structures experience biochemical stimuli and mechanical forces that influence tissue development after implantation such as the immunological response, oxidative stress, hemodynamic shear stress, and mechanical strain. Endothelial cells are a cell source of major interest in vascular tissue engineering because of their ability to form a luminal antithrombotic monolayer. In addition, through their ability to undergo endothelial to mesenchymal transition (EndMT), endothelial cells may yield a cell type capable of increased production and remodeling of the extracellular matrix (ECM). ECM is of major importance to the mechanical function of all cardiovascular structures. Tissue engineering approaches may employ EndMT to recapitulate, in part, the embryonic development of cardiovascular structures. Improved understanding of how the environment of an implanted graft could influence EndMT in endothelial cells may lead to novel tissue engineering strategies. This review presents an overview of biochemical and mechanical stimuli capable of influencing EndMT, discusses the influence of these stimuli as found in the direct environment of cardiovascular grafts, and discusses approaches to employ EndMT in tissue-engineered constructs.

10.
J Med Genet ; 53(1): 62-72, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26490104

RESUMEN

BACKGROUND: Joubert syndrome (JS) is a recessive ciliopathy characterised by a distinctive brain malformation 'the molar tooth sign'. Mutations in >27 genes cause JS, and mutations in 12 of these genes also cause Meckel-Gruber syndrome (MKS). The goals of this work are to describe the clinical features of MKS1-related JS and determine whether disease causing MKS1 mutations affect cellular phenotypes such as cilium number, length and protein content as potential mechanisms underlying JS. METHODS: We measured cilium number, length and protein content (ARL13B and INPP5E) by immunofluorescence in fibroblasts from individuals with MKS1-related JS and in a three-dimensional (3D) spheroid rescue assay to test the effects of disease-related MKS1 mutations. RESULTS: We report MKS1 mutations (eight of them previously unreported) in nine individuals with JS. A minority of the individuals with MKS1-related JS have MKS features. In contrast to the truncating mutations associated with MKS, all of the individuals with MKS1-related JS carry ≥ 1 non-truncating mutation. Fibroblasts from individuals with MKS1-related JS make normal or fewer cilia than control fibroblasts, their cilia are more variable in length than controls, and show decreased ciliary ARL13B and INPP5E. Additionally, MKS1 mutant alleles have similar effects in 3D spheroids. CONCLUSIONS: MKS1 functions in the transition zone at the base of the cilium to regulate ciliary INPP5E content, through an ARL13B-dependent mechanism. Mutations in INPP5E also cause JS, so our findings in patient fibroblasts support the notion that loss of INPP5E function, due to either mutation or mislocalisation, is a key mechanism underlying JS, downstream of MKS1 and ARL13B.


Asunto(s)
Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Cerebelo/anomalías , Cilios/genética , Cilios/metabolismo , Anomalías del Ojo/genética , Anomalías del Ojo/metabolismo , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Retina/anomalías , Factores de Ribosilacion-ADP/metabolismo , Anomalías Múltiples/diagnóstico , Animales , Encéfalo/patología , Células Cultivadas , Cerebelo/metabolismo , Cilios/patología , Exones , Anomalías del Ojo/diagnóstico , Fibroblastos/metabolismo , Fibroblastos/patología , Regulación de la Expresión Génica , Humanos , Enfermedades Renales Quísticas/diagnóstico , Imagen por Resonancia Magnética , Ratones , Modelos Biológicos , Mutación , Unión Proteica , Transporte de Proteínas , Retina/metabolismo , Tomografía Computarizada por Rayos X
11.
Nat Cell Biol ; 18(1): 122-31, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26595381

RESUMEN

The transition zone (TZ) ciliary subcompartment is thought to control cilium composition and signalling by facilitating a protein diffusion barrier at the ciliary base. TZ defects cause ciliopathies such as Meckel-Gruber syndrome (MKS), nephronophthisis (NPHP) and Joubert syndrome (JBTS). However, the molecular composition and mechanisms underpinning TZ organization and barrier regulation are poorly understood. To uncover candidate TZ genes, we employed bioinformatics (coexpression and co-evolution) and identified TMEM107 as a TZ protein mutated in oral-facial-digital syndrome and JBTS patients. Mechanistic studies in Caenorhabditis elegans showed that TMEM-107 controls ciliary composition and functions redundantly with NPHP-4 to regulate cilium integrity, TZ docking and assembly of membrane to microtubule Y-link connectors. Furthermore, nematode TMEM-107 occupies an intermediate layer of the TZ-localized MKS module by organizing recruitment of the ciliopathy proteins MKS-1, TMEM-231 (JBTS20) and JBTS-14 (TMEM237). Finally, MKS module membrane proteins are immobile and super-resolution microscopy in worms and mammalian cells reveals periodic localizations within the TZ. This work expands the MKS module of ciliopathy-causing TZ proteins associated with diffusion barrier formation and provides insight into TZ subdomain architecture.


Asunto(s)
Cerebelo/anomalías , Cilios/metabolismo , Proteínas de la Membrana/metabolismo , Retina/anomalías , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cerebelo/metabolismo , Anomalías del Ojo/genética , Anomalías del Ojo/metabolismo , Humanos , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/metabolismo , Proteínas de la Membrana/genética , Retina/metabolismo
12.
Pediatr Nephrol ; 31(4): 545-54, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26219413

RESUMEN

Ciliopathy nephronophthisis (NPHP), a common cause of end-stage renal disease (ESRD) in children and young adults, is characterized by disintegration of the tubular basement membrane accompanied by irregular thickening and attenuation, interstitial fibrosis and tubular atrophy, and occasionally cortico-medullary cyst formation. Pharmacological approaches that delay the development of ESRD could potentially extend the window of therapeutic opportunity for this group of patients, generating time to find an appropriate donor or even for new treatments to mature. In this review we provide an overview of compounds that have been tested to ameliorate kidney cysts and/or fibrosis. We also revisit paclitaxel as a potential strategy to target fibrosis in NPHP. At low dosage this chemotherapy drug shows promising results in rodent models of renal fibrosis. Possible adverse events and safety of paclitaxel treatment in pediatric patients would need to be investigated, as would the efficacy, optimum dose, and administration schedule for the treatment of renal fibrosis in NPHP patients. Paclitaxel is an approved drug for human use with known pharmacokinetics, which could potentially be used in other ciliopathies through targeting the microtubule skeleton.


Asunto(s)
Ciliopatías/terapia , Enfermedades Renales Quísticas/congénito , Riñón/efectos de los fármacos , Agentes Urológicos/uso terapéutico , Animales , Ciliopatías/complicaciones , Ciliopatías/diagnóstico , Fibrosis , Humanos , Riñón/metabolismo , Riñón/patología , Enfermedades Renales Quísticas/complicaciones , Enfermedades Renales Quísticas/diagnóstico , Enfermedades Renales Quísticas/tratamiento farmacológico , Enfermedades Renales Quísticas/metabolismo , Fallo Renal Crónico/etiología , Fallo Renal Crónico/prevención & control , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Microtúbulos/patología , Paclitaxel/uso terapéutico , Factores de Riesgo , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento , Agentes Urológicos/efectos adversos , Agentes Urológicos/farmacocinética
13.
J Cell Sci ; 128(24): 4550-9, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26546361

RESUMEN

To investigate the contribution of ion channels to ciliogenesis, we carried out a small interfering RNA (siRNA)-based reverse genetics screen of all ion channels in the mouse genome in murine inner medullary collecting duct kidney cells. This screen revealed four candidate ion channel genes: Kcnq1, Kcnj10, Kcnf1 and Clcn4. We show that these four ion channels localize to renal tubules, specifically to the base of primary cilia. We report that human KCNQ1 Long QT syndrome disease alleles regulate renal ciliogenesis; KCNQ1-p.R518X, -p.A178T and -p.K362R could not rescue ciliogenesis after Kcnq1-siRNA-mediated depletion in contrast to wild-type KCNQ1 and benign KCNQ1-p.R518Q, suggesting that the ion channel function of KCNQ1 regulates ciliogenesis. In contrast, we demonstrate that the ion channel function of KCNJ10 is independent of its effect on ciliogenesis. Our data suggest that these four ion channels regulate renal ciliogenesis through the periciliary diffusion barrier or the ciliary pocket, with potential implication as genetic contributors to ciliopathy pathophysiology. The new functional roles of a subset of ion channels provide new insights into the disease pathogenesis of channelopathies, which might suggest future therapeutic approaches.


Asunto(s)
Túbulos Renales Colectores/metabolismo , Canales de Potasio/metabolismo , Animales , Línea Celular , Cilios/genética , Cilios/metabolismo , Humanos , Túbulos Renales Colectores/patología , Ratones , Canales de Potasio/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología
14.
J Clin Invest ; 125(9): 3657-66, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26301811

RESUMEN

Juvenile ciliopathy syndromes that are associated with renal cysts and premature renal failure are commonly the result of mutations in the gene encoding centrosomal protein CEP290. In addition to centrosomes and the transition zone at the base of the primary cilium, CEP290 also localizes to the nucleus; however, the nuclear function of CEP290 is unknown. Here, we demonstrate that reduction of cellular CEP290 in primary human and mouse kidney cells as well as in zebrafish embryos leads to enhanced DNA damage signaling and accumulation of DNA breaks ex vivo and in vivo. Compared with those from WT mice, primary kidney cells from Cep290-deficient mice exhibited supernumerary centrioles, decreased replication fork velocity, fork asymmetry, and increased levels of cyclin-dependent kinases (CDKs). Treatment of Cep290-deficient cells with CDK inhibitors rescued DNA damage and centriole number. Moreover, the loss of primary cilia that results from CEP290 dysfunction was rescued in 3D cell culture spheroids of primary murine kidney cells after exposure to CDK inhibitors. Together, our results provide a link between CEP290 and DNA replication stress and suggest CDK inhibition as a potential treatment strategy for a wide range of ciliopathy syndromes.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Cerebelo/anomalías , Daño del ADN , Riñón/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Retina/anomalías , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Anomalías Múltiples/patología , Animales , Antígenos de Neoplasias/genética , Proteínas de Ciclo Celular , Línea Celular , Centriolos/genética , Centriolos/metabolismo , Centriolos/patología , Cerebelo/metabolismo , Cerebelo/patología , Proteínas del Citoesqueleto , Replicación del ADN , Anomalías del Ojo/genética , Anomalías del Ojo/metabolismo , Anomalías del Ojo/patología , Humanos , Riñón/patología , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/metabolismo , Enfermedades Renales Quísticas/patología , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Retina/metabolismo , Retina/patología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
15.
Nitric Oxide ; 49: 56-66, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26192363

RESUMEN

Hydrogen sulfide (H2S), carbon monoxide (CO) and nitric oxide (NO) share signaling and vasorelaxant properties and are involved in proliferation and apoptosis. Inhibiting NO production or availability induces hypertension and proteinuria, which is prevented by concomitant blockade of the H2S producing enzyme cystathionine γ-lyase (CSE) by d,l-propargylglycine (PAG). We hypothesized that blocking H2S production ameliorates Angiotensin II (AngII)-induced hypertension and renal injury in a rodent model. Effects of concomitant administration of PAG or saline were therefore studied in healthy (CON) and AngII hypertensive rats. In CON rats, PAG did not affect systolic blood pressure (SBP), but slightly increased proteinuria. In AngII rats PAG reduced SBP, proteinuria and plasma creatinine (180 ± 12 vs. 211 ± 19 mmHg; 66 ± 35 vs. 346 ± 92 mg/24 h; 24 ± 6 vs. 47 ± 15 µmol/L, respectively; p < 0.01). Unexpectedly, kidney to body weight ratio was increased in all groups by PAG (p < 0.05). Renal injury induced by AngII was reduced by PAG (p < 0.001). HO-1 gene expression was increased by PAG alone (p < 0.05). PAG increased inner cortical tubular cell proliferation after 1 week and decreased outer cortical tubular nucleus number/field after 4 weeks. In vitro proximal tubular cell size increased after exposure to PAG. In summary, blocking H2S production with PAG reduced SBP and renal injury in AngII infused rats. Independent of the cardiovascular and renal effects, PAG increased HO-1 gene expression and kidney weight. PAG alone increased tubular cell size and proliferation in-vivo and in-vitro. Our results are indicative of a complex interplay of gasotransmitter signaling/action of mutually compensatory nature in the kidney.


Asunto(s)
Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/metabolismo , Alquinos/farmacología , Angiotensina II/efectos adversos , Presión Sanguínea/efectos de los fármacos , Glicina/análogos & derivados , Sulfuro de Hidrógeno/metabolismo , Alquinos/administración & dosificación , Animales , Proliferación Celular , Glicina/administración & dosificación , Glicina/farmacología , Hemo-Oxigenasa 1/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Masculino , Óxido Nítrico , Tamaño de los Órganos , Ratas , Ratas Sprague-Dawley
16.
Nat Cell Biol ; 17(8): 1074-1087, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26167768

RESUMEN

Defects in primary cilium biogenesis underlie the ciliopathies, a growing group of genetic disorders. We describe a whole-genome siRNA-based reverse genetics screen for defects in biogenesis and/or maintenance of the primary cilium, obtaining a global resource. We identify 112 candidate ciliogenesis and ciliopathy genes, including 44 components of the ubiquitin-proteasome system, 12 G-protein-coupled receptors, and 3 pre-mRNA processing factors (PRPF6, PRPF8 and PRPF31) mutated in autosomal dominant retinitis pigmentosa. The PRPFs localize to the connecting cilium, and PRPF8- and PRPF31-mutated cells have ciliary defects. Combining the screen with exome sequencing data identified recessive mutations in PIBF1, also known as CEP90, and C21orf2, also known as LRRC76, as causes of the ciliopathies Joubert and Jeune syndromes. Biochemical approaches place C21orf2 within key ciliopathy-associated protein modules, offering an explanation for the skeletal and retinal involvement observed in individuals with C21orf2 variants. Our global, unbiased approaches provide insights into ciliogenesis complexity and identify roles for unanticipated pathways in human genetic disease.


Asunto(s)
Cilios/genética , Trastornos de la Motilidad Ciliar/genética , Marcadores Genéticos , Pruebas Genéticas/métodos , Genómica/métodos , Células Fotorreceptoras , Interferencia de ARN , Anomalías Múltiples , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/ultraestructura , Enfermedades Cerebelosas/genética , Cerebelo/anomalías , Cilios/metabolismo , Cilios/patología , Trastornos de la Motilidad Ciliar/metabolismo , Trastornos de la Motilidad Ciliar/patología , Proteínas del Citoesqueleto , Bases de Datos Genéticas , Síndrome de Ellis-Van Creveld/genética , Anomalías del Ojo/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Enfermedades Renales Quísticas/genética , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Fenotipo , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/ultraestructura , Proteínas Gestacionales/genética , Proteínas Gestacionales/metabolismo , Proteínas/genética , Proteínas/metabolismo , Reproducibilidad de los Resultados , Retina/anomalías , Factores Supresores Inmunológicos/genética , Factores Supresores Inmunológicos/metabolismo , Transfección , Pez Cebra/genética , Pez Cebra/metabolismo
17.
Cilia ; 4: 8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26034581

RESUMEN

BACKGROUND: Ciliopathies give rise to a multitude of organ-specific pathologies; obtaining relevant primary patient material is useful for both diagnostics and research. However, acquisition of primary ciliated cells from patients, particularly pediatric patients, presents multiple difficulties. Biopsies and blood samples are invasive, and patients (and their parents) may be reluctant to travel to medical centers, especially for research purposes. We sought to develop non-invasive methods of obtaining viable and ciliated primary cells from ciliopathy patients which could be obtained in the home environment. FINDINGS: We introduce two methods for the non-invasive acquisition of primary ciliated cells. In one approach, we collected spontaneously shed deciduous (milk) teeth from children. Fibroblast-like cells were observed after approximately 2 weeks of culture of fragmented teeth. Secondly, urine samples were collected from children or adults. Cellular content was isolated and after approximately 1 week, renal epithelial cells were observed. Both urine and tooth-derived cells ciliate and express ciliary proteins visible with immunofluorescence. Urine-derived renal epithelial cells (URECs) are amenable to 3D culturing, siRNA knockdown, and ex vivo drug testing. CONCLUSIONS: As evidence continues to accumulate showing that the primary cilium has a central role in development and disease, the need for readily available and ciliated patient cells will increase. Here, we introduce two methods for the non-invasive acquisition of cells with primary cilia. We believe that these cells can be used for further ex vivo study of ciliopathies and in the future, for personalized medicine.

18.
Trends Cell Biol ; 25(6): 317-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25937400

RESUMEN

Juvenile renal failure is commonly caused by the ciliopathy nephronophthisis (NPHP). Since all NPHP genes regulate cilia function, it has been assumed that NPHP onset is due to cilia loss. However, recent data suggest that DNA damage caused by replication stress, possibly concomitant with or upstream of cilia dysfunction, causes NPHP.


Asunto(s)
Cilios/patología , Daño del ADN/fisiología , Replicación del ADN/fisiología , Enfermedades Renales Quísticas/metabolismo , Animales , Ciclo Celular/fisiología , Humanos
19.
PLoS Genet ; 10(10): e1004594, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25340510

RESUMEN

We recently reported that centrosomal protein 164 (CEP164) regulates both cilia and the DNA damage response in the autosomal recessive polycystic kidney disease nephronophthisis. Here we examine the functional role of CEP164 in nephronophthisis-related ciliopathies and concomitant fibrosis. Live cell imaging of RPE-FUCCI (fluorescent, ubiquitination-based cell cycle indicator) cells after siRNA knockdown of CEP164 revealed an overall quicker cell cycle than control cells, although early S-phase was significantly longer. Follow-up FACS experiments with renal IMCD3 cells confirm that Cep164 siRNA knockdown promotes cells to accumulate in S-phase. We demonstrate that this effect can be rescued by human wild-type CEP164, but not disease-associated mutants. siRNA of CEP164 revealed a proliferation defect over time, as measured by CyQuant assays. The discrepancy between accelerated cell cycle and inhibited overall proliferation could be explained by induction of apoptosis and epithelial-to-mesenchymal transition. Reduction of CEP164 levels induces apoptosis in immunofluorescence, FACS and RT-QPCR experiments. Furthermore, knockdown of Cep164 or overexpression of dominant negative mutant allele CEP164 Q525X induces epithelial-to-mesenchymal transition, and concomitant upregulation of genes associated with fibrosis. Zebrafish injected with cep164 morpholinos likewise manifest developmental abnormalities, impaired DNA damage signaling, apoptosis and a pro-fibrotic response in vivo. This study reveals a novel role for CEP164 in the pathogenesis of nephronophthisis, in which mutations cause ciliary defects coupled with DNA damage induced replicative stress, cell death, and epithelial-to-mesenchymal transition, and suggests that these events drive the characteristic fibrosis observed in nephronophthisis kidneys.


Asunto(s)
Cilios/genética , Fibrosis/genética , Enfermedades Renales Quísticas/genética , Proteínas de Microtúbulos/genética , Animales , Apoptosis/genética , Ciclo Celular/genética , Cilios/patología , Daño del ADN/genética , Transición Epitelial-Mesenquimal , Fibrosis/patología , Técnicas de Silenciamiento del Gen , Humanos , Enfermedades Renales Quísticas/patología , Proteínas de Microtúbulos/biosíntesis , ARN Interferente Pequeño , Transducción de Señal , Pez Cebra
20.
Proc Natl Acad Sci U S A ; 111(27): 9893-8, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-24946806

RESUMEN

Nephronophthisis (NPHP) is the major cause of pediatric renal failure, yet the disease remains poorly understood, partly due to the lack of appropriate animal models. Joubert syndrome (JBTS) is an inherited ciliopathy giving rise to NPHP with cerebellar vermis aplasia and retinal degeneration. Among patients with JBTS and a cerebello-oculo-renal phenotype, mutations in CEP290 (NPHP6) are the most common genetic lesion. We present a Cep290 gene trap mouse model of JBTS that displays the kidney, eye, and brain abnormalities that define the syndrome. Mutant mice present with cystic kidney disease as neonates. Newborn kidneys contain normal amounts of lymphoid enhancer-binding factor 1 (Lef1) and transcription factor 1 (Tcf1) protein, indicating normal function of the Wnt signaling pathway; however, an increase in the protein Gli3 repressor reveals abnormal Hedgehog (Hh) signaling evident in newborn kidneys. Collecting duct cells from mutant mice have abnormal primary cilia and are unable to form spheroid structures in vitro. Treatment of mutant cells with the Hh agonist purmorphamine restored normal spheroid formation. Renal epithelial cells from a JBTS patient with CEP290 mutations showed similar impairments to spheroid formation that could also be partially rescued by exogenous stimulation of Hh signaling. These data implicate abnormal Hh signaling as the cause of NPHP and suggest that Hh agonists may be exploited therapeutically.


Asunto(s)
Enfermedades Cerebelosas/metabolismo , Anomalías del Ojo/metabolismo , Proteínas Hedgehog/metabolismo , Enfermedades Renales Quísticas/congénito , Retina/anomalías , Transducción de Señal , Anomalías Múltiples , Animales , Antígenos de Neoplasias , Proteínas de Ciclo Celular , Cerebelo/anomalías , Proteínas del Citoesqueleto , Técnica del Anticuerpo Fluorescente , Enfermedades Renales Quísticas/metabolismo , Enfermedades Renales Quísticas/terapia , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/genética , Retina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA