RESUMEN
A variety of new inorganic and organic materials have emerged to advance laser technologies and optical engineering. A rational design approach can contribute significantly to fabricating nonlinear optically active metal-organic frameworks (MOFs) by considering the underlying structure-property linkage. Here, it has been embarked on a study of novel samarium(III) MOF, ([Sm2(ata)3(DMF)4]·DMF (ata2-: 2-aminoterephthalate), abbreviated as NH2-Sm-MUM-4) with enhanced nonlinear optical (NLO) properties. The crystal structure of this MOF represents a 6-connected framework with a pcu topology and distinctive characteristics, including open metal sites, free amine groups, and great stability, making it suitable for third-order NLO activity. The nonlinear index of refraction (n2) revealed the self-focusing impacts of NH2-Sm-MUM-4 at different incident intensities. The highest value of n2 and ß related to 10 mw power of incident intensity are 5.15 cm2/W and 2.65 cm/W, respectively. As far as the authors know, this is the first study examining the potential systematic structural-property associations in Sm-MOFs considering improved third-order NLO properties.
RESUMEN
We report square planar mononuclear Pt(II)-complexes of terpyridines in the form of [PtCl(L1/L2)]PF6 as phosphorescent emitters (where L1 = 4-(3-pyridine)2,2':6',2''-terpyridine and L2 = 4'-(3-pyridinyl)-4,4''-di(tert-butyl)-2,2':6'2''-terpyridine). Complex 2 showed emission at 534 nm in the DCM solution with photoluminescence quantum efficiency (ΦPL) = 14%, while in the mCBP host (5-wt % doped), the emission shifted to 584 nm with ΦPL = 37.8% and a phosphorescence lifetime (τphos) of 37.8 µs. Complex 2 in mCBP was used to fabricate a solution-processed phosphorescent organic light-emitting diode (PhOLED) which showed maximum external quantum efficiency (EQEmax) = 7.4% with yellow emission at λEL = 570 nm and exhibited a low efficiency roll-off with an EQE drop to 7.0% at 1000 cd/m2.
RESUMEN
Controlling and understanding charge state and metal coordination in carbon nanomaterials is crucial to harnessing their unique properties. Here we describe the synthesis of the well-defined fulleride complex [{(Mesnacnac)Mg}6C70], 2, (Mesnacnac)=HC(MeCNMes)2, Mes=2,4,6-Me3C6H2, from the reaction of the ß-diketiminate magnesium(I) complex [{(Mesnacnac)Mg}2] with C70 in aromatic solvents. The molecular structure of complex 2 was determined, providing the first high-quality structural study of a complex with the C70 6- ion. In combination with solution state NMR spectroscopic and DFT computational studies, the changes in geometry and charge distribution in the various atom and bond types of the fulleride unit were investigated. Additionally, the influence of the (Mesnacnac)Mg+ cations on the global and local fulleride coordination environment was examined.
RESUMEN
A new pyrazole based thiosemicarbazone ligand, 5-methyl-3-formylpyrazole-N(4)-isopropylthiosemicarbazone, (HMPzNHPri) (compound I), and its cobalt(III) and nickel(II) complexes, [Co(MPzNHPri)2]Cl (compound II) and [Ni(HMPzNHPri)2]Br2 (compound III), respectively, have been synthesized and characterized through various physico-chemical and spectroscopic studies. Both the reported Co(III) and Ni(II) complexes are cationic in nature and behave as 1:1 and 1:2 electrolytes in MeOH, respectively. Electronic spectral features of the complexes have classified them as distorted octahedral ones. IR spectral data (4000-450 cm-1) have suggested a monoprotic tridentate (NNS) function of compound I coordinating to the Co(III) ion via the pyrazolyl (tertiary) ring nitrogen, azomethine nitrogen and thiolato sulphur atom; while for compound III, compound I has been found to act as neutral NNS tridentate one, coordinating to Ni(II) via the pyrazolyl iminic nitrogen, azomethine nitrogen and thioketo sulphur. Structural features of all the compounds are confirmed by the single crystal X-ray data. All the compounds reported here have been found to exhibit significant photocatalytic activity towards degradation of Methylene Blue (MB) under UV radiation. Anticancer activity of all the three compounds against cancer cell lines (HeLa and A549) and a normal cell line (HEK293) have been investigated. Compound II has been found to be more efficient against the human cervical cancer cell (HeLa) and the lung cancer cell (A549) than compounds I and III. The ligand and both the complexes display potential activities against both gram-positive (Bacillus subtilis MTCC 7193) and gram-negative bacteria (E. coli MTCC 1610).
Asunto(s)
Antineoplásicos , Cobalto , Complejos de Coordinación , Níquel , Pirazoles , Tiosemicarbazonas , Tiosemicarbazonas/química , Níquel/química , Cobalto/química , Pirazoles/química , Pirazoles/farmacología , Pirazoles/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Humanos , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Cristalografía por Rayos X/métodos , Ligandos , Línea Celular Tumoral , Catálisis , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Pruebas de Sensibilidad MicrobianaRESUMEN
We report the extension of the common ß-diketimine proligand class, RArnacnacH (HC(RCNAr)2H), where R is an alkyl group such as Et or iPr, plus Ph, and Ar is a sterically demanding aryl substituent such as Dip = 2,6-diispropylphenyl, Dep = 2,6-diethylphenyl, Mes = 2,4,6-trimethylphenyl or mesityl, Xyl = 2,6-dimethylphenyl, via one-pot condensation procedures. When a condensation reaction is carried out using the chemical dehydrating agent PPSE (polyphosphoric acid trimethylsilylester), ß-diketiminate phosphorus(V) products such as (iPrMesnacnac)PO2 can also be obtained, which can be converted to the respective proligand iPrMesnacnacH via alkaline hydrolysis. The RArnacnacH proligands can be converted to their alkali metal complexes with common methods and we have found that deprotonation of iPrDipnacnacH is significantly more sluggish than that of related ß-diketimines with smaller backbone alkyl groups. The basicity of the RArnacnac- anions can play a role in the success of their salt metathesis chemistry and we have prepared and structurally characterised the EtDipnacnac-derived silicon(II) compounds (EtDipnacnac)SiBr and (EtDipnacnac')Si, where EtDipnacnac' is the deprotonated variant MeCHC(NDip)CHC(NDip)Et.
RESUMEN
Narrowband emissive multiresonant thermally activated delayed fluorescence (MR-TADF) emitters are a promising solution to achieve the current industry-targeted color standard, Rec. BT.2020-2, for blue color without using optical filters, aiming for high-efficiency organic light-emitting diodes (OLEDs). However, their long triplet lifetimes, largely affected by their slow reverse intersystem crossing rates, adversely affect device stability. In this study, a helical MR-TADF emitter (f-DOABNA) is designed and synthesized. Owing to its π-delocalized structure, f-DOABNA possesses a small singlet-triplet gap, ΔEST, and displays simultaneously an exceptionally faster reverse intersystem crossing rate constant, kRISC, of up to 2 × 106 s-1 and a very high photoluminescence quantum yield, ΦPL, of over 90% in both solution and doped films. The OLED with f-DOABNA as the emitter achieved a narrow deep-blue emission at 445 nm (full width at half-maximum of 24 nm) associated with Commission Internationale de l'Éclairage (CIE) coordinates of (0.150, 0.041), and showed a high maximum external quantum efficiency, EQEmax, of ≈20%.
RESUMEN
Two mixed peri-substituted phosphine-chlorostibines, Acenap(PiPr2)(SbPhCl) and Acenap(PiPr2)(SbCl2) (Acenap = acenaphthene-5,6-diyl) reacted cleanly with Grignard reagents or nBuLi to give the corresponding tertiary phosphine-stibines Acenap(PiPr2)(SbRR') (R, R' = Me, iPr, nBu, Ph). In addition, the Pt(II) complex of the tertiary phosphine-stibine Acenap(PiPr2)(SbPh2) as well as the Mo(0) complex of Acenap(PiPr2)(SbMePh) were synthesised and characterised. Two of the phosphine-stibines and the two metal complexes were characterised by single-crystal X-ray diffraction. The peri-substituted species act as bidentate ligands through both P and Sb atoms, forming rather short Sb-metal bonds. The tertiary phosphine-stibines display through-space J(CP) couplings between the phosphorus atom and carbon atoms bonded directly to the Sb atom of up to 40 Hz. The sequestration of the P and Sb lone pairs results in much smaller corresponding J(CP) being observed in the metal complexes. QTAIM (Quantum Theory of Atoms in Molecules) and EDA-NOCV (Energy Decomposition Analysis employing Naturalised Orbitals for Chemical Valence) computational techniques were used to provide additional insight into a weak n(P)âσ*(Sb-C) intramolecular bonding interaction (pnictogen bond) in the phosphine-stibines.
RESUMEN
Phospholane-phosphites are known to show highly unusual selectivity towards branched aldehydes in the hydroformylation of terminal alkenes. This paper describes the synthesis of hitherto unknown unsaturated phospholene borane precursors and their conversion to the corresponding phospholene-phosphites. The relative stereochemistry of one of these ligands and its Pd complex was assigned with the aid of X-ray crystal structure determinations. These ligands were able to approach the level of selectivity observed for phospholane-phosphites in the rhodium-catalysed hydroformylation of propene. High-pressure infra-red (HPIR) spectroscopic monitoring of the catalyst formation revealed that whilst the catalysts showed good thermal stability with respect to fragmentation, the C=C bond in the phospholene moiety was slowly hydrogenated in the presence of rhodium and syngas. The ability of this spectroscopic tool to detect even subtle changes in structure, remotely from the carbonyl ligands, underlines the usefulness of HPIR spectroscopy in hydroformylation catalyst development.
RESUMEN
A series of phosphorus and selenium peri-substituted acenaphthene species with the phosphino group oxidized by O, S, and Se has been isolated and fully characterized, including by single-crystal X-ray diffraction. The P(V) and Se(II) systems showed fluxional behavior in solution due to the presence of two major rotamers, as evidenced with solution NMR spectroscopy. Using Variable-Temperature NMR (VT NMR) and supported by DFT (Density Functional Theory) calculations and solid-state NMR, the major rotamers in the solid and in solution were identified. All compounds showed a loss of the through-space JPSe coupling observed in the unoxidized P(III) and Se(II) systems due to the sequestration of the lone pair of the phosphine, which has been previously identified as the major contributor to the coupling pathway.
RESUMEN
The reactivity between bis(pyridin-2-yl)diselane o Py2 Se2 and ditellane o Py2 Te2 (L1 and L2, respectively; o Py=pyridyn-2-yl) and I2 /Br2 is discussed. Single-crystal structure analysis revealed that the reaction of L1 with I2 yielded [(HL1+ )(I- )â 5/2I2 ]∞ (1) in which monoprotonated cations HL1+ template a self-assembled infinite pseudo-cubic polyiodide 3D-network, while the reaction with Br2 yielded the dibromide Ho PySeII Br2 (2). The oxidation of L2 with I2 and Br2 yielded the compounds Ho PyTeII I2 (3) and Ho PyTeIV Br4 (6), respectively, whose structures were elucidated by X-ray diffraction analysis. FT-Raman spectroscopy measurements are consistent with a 3c-4e description of all the X-Ch-X three-body systems (Ch=Se, Te; X=Br, I) in compounds 2, 3, Ho PyTeII Br2 (5), and 6. The structural and spectroscopic observations are supported by extensive theoretical calculations carried out at the DFT level that were employed to study the electronic structure of the investigated compounds, the thermodynamic aspects of their formation, and the role of noncovalent σ-hole halogen and chalcogen bonds in the Xâ â â X, Xâ â â Ch and Châ â â Ch interactions evidenced structurally.
RESUMEN
Cocoa pod husks (CPHs) represent an underutilized component of the chocolate manufacturing process. While industry's current focus is understandably on the cocoa beans, the husks make up around 75 wt % of the fruit. Previous studies have been dominated by the carbohydrate polymers present in CPHs, but this work highlights the presence of the biopolymer lignin in this biomass. An optimized organosolv lignin isolation protocol was developed, delivering significant practical improvements. This new protocol may also prove to be useful for agricultural waste-derived biomasses in general. NMR analysis of the high quality lignin led to an improved structural understanding, with evidence provided to support deacetylation of the lignin occurring during the optimized pretreatment. Chemical transformation, using a tosylation, azidation, copper-catalyzed click protocol, delivered a modified lignin oligomer with an organophosphorus motif attached. Thermogravimetric analysis was used to demonstrate the oligomer's potential as a flame-retardant. Preliminary analysis of the other product streams isolated from the CPHs was also carried out.
RESUMEN
The reactions of [{(iPrDipNacNac)Mg}2] 1 (iPrDipnacnac = HC(iPrCNDip)2) with Ph3PâO at 100 °C afforded the phosphinate complex [(iPrDipNacNac)Mg(OPPh3)(OPPh2)] 3. Reactions of 1 with Ph3PâE (E = S, Se) proceeded rapidly at room temperature to low-coordinate chalcogenide complexes [{(iPrDipNacNac)Mg}2(µ-S)] 4 and [{(iPrDipNacNac)Mg}2(µ-Se)] 5, respectively. Similarly, reactions of RNHCâS ((MeCNR)2CâS with R = Me, Et, or iPr) with 1 afforded NHC adducts of magnesium sulfide complexes, [{(iPrDipNacNac)Mg(RNHC)}(µ-S){Mg(iPrDipNacNac)}] 6, that could alternatively be obtained by adding the appropriate RNHC to sulfide complex 4. Complex 4 reacted with 1-adamantylazide (AdN3) to give [{(iPrDipNacNac)Mg}2(µ-SN3Ad)] 7 and can form various simple donor adducts in solution, of which [(iPrDipNacNac)Mg(OAd)}2(µ-S)] 8a (OAd = 2-adamantanone) was structurally characterized. The nature of the ionic Mg-E-Mg unit is described by solution and solid-state studies of the complexes and by DFT computational investigations.
RESUMEN
The title compound, C6H8N2O4, a new derivative of isoxazole, has been synthesized and structurally characterized. The crystal structure shows the mol-ecule to be almost planar (r.m.s. deviation for the non-hydrogen atoms = 0.029â Å), this conformation being supported by an intra-molecular N-Hâ¯O hydrogen bond. In the extended structure, the mol-ecules are linked by N-Hâ¯O hydrogen bonds into chains propagating along [010].
RESUMEN
Corannulene-derived materials have been extensively explored in energy storage and solar cells, however, are rarely documented as emitters in light-emitting sensors and organic light-emitting diodes (OLEDs), due to low exciton utilization. Here, we report a family of multi-donor and acceptor (multi-D-A) motifs, TCzPhCor, TDMACPhCor, and TPXZPhCor, using corannulene as the acceptor and carbazole (Cz), 9,10-dihydro-9,10-dimethylacridine (DMAC), and phenoxazine (PXZ) as the donor, respectively. By decorating corannulene with different donors, multiple phosphorescence is realized. Theoretical and photophysical investigations reveal that TCzPhCor shows room-temperature phosphorescence (RTP) from the lowest-lying T1 ; however, for TDMACPhCor, dual RTP originating from a higher-lying T1 (T1 H ) and a lower-lying T1 (T1 L ) can be observed, while for TPXZPhCor, T1 H -dominated RTP occurs resulting from a stabilized high-energy T1 geometry. Benefiting from the high-temperature sensitivity of TPXZPhCor, high color-resolution temperature sensing is achieved. Besides, due to degenerate S1 and T1 H states of TPXZPhCor, the first corannulene-based solution-processed afterglow OLEDs is investigated. The afterglow OLED with TPXZPhCor shows a maximum external quantum efficiency (EQEmax ) and a luminance (Lmax ) of 3.3 % and 5167â cd m-2 , respectively, which is one of the most efficient afterglow RTP OLEDs reported to date.
RESUMEN
A series of peri-substituted acenaphthene-based phosphine selenoether bidentate ligands Acenap(iPr2P)(SeAr) (L1-L4, Acenap = acenaphthene-5,6-diyl, Ar = Ph, mesityl, 2,4,6-trisopropylphenyl and supermesityl) were prepared. The rigid acenaphthene framework induces a forced overlap of the phosphine and selenoether lone pairs, resulting in a large magnitude of through-space 4JPSe coupling, ranging from 452 to 545 Hz. These rigid ligands L1-L4 were used to prepare a series of selected late d-block metals, mercury, and borane complexes, which were characterized, including by multinuclear NMR and single-crystal X-ray diffraction. The Lewis acidic motifs (BH3, Mo(CO)4, Ag+, PdCl2, PtCl2, and HgCl2) bridge the two donor atoms (P and Se) in all but one case in the solid-state structures. Where the bridging motif contained NMR-active nuclei (11B, 107Ag, 109Ag, 195Pt, and 199Hg), JPM and JSeM couplings are observed directly, in addition to the altered JPSe in the respective NMR spectra. The solution NMR data are correlated with single-crystal diffraction data, and in the case of mercury(II) complexes, they are also correlated with the solid-state NMR data and coupling deformation density calculations. The latter indicate that the through-space interaction dominates in free L1, while in the L1HgCl2 complex, the main coupling pathway is via the metal atom and not through the carbon framework of the acenaphthene ring system.
RESUMEN
We report a combined experimental and computational study of the mechanism of the Cu-catalyzed arylboronic acid iododeboronation reaction. A combination of structural and density functional theory (DFT) analyses has allowed determination of the identity of the reaction precatalyst with insight into each step of the catalytic cycle. Key findings include a rationale for ligand (phen) stoichiometry related to key turnover events-the ligand facilitates transmetalation via H-bonding to an organoboron boronate generated in situ and phen loss/gain is integral to the key oxidative events. These data provide a framework for understanding ligand effects on these key mechanistic processes, which underpin several classes of Cu-mediated oxidative coupling reactions.
RESUMEN
Catalytic enantioselective transformations usually rely upon optimal enantioselectivity being observed in kinetically controlled reaction processes, with energy differences between diastereoisomeric transition state energies translating to stereoisomeric product ratios. Herein, stereoselectivity resulting from an unusual reversible Michael addition of an aryl ester to 2-benzylidene malononitrile electrophiles using an isothiourea as a Lewis base catalyst is demonstrated. Notably, the basicity of the aryloxide component and reactivity of the isothiourea Lewis base both affect the observed product selectivity, with control studies and crossover experiments indicating the feasibility of a constructive reversible Michael addition from the desired product. When this reversible addition is coupled with a crystallisation-induced diastereomer transformation (CIDT) it allows isolation of products in high yield and stereocontrol (14 examples, up to 95 : 5 dr and 99 : 1 er). Application of this process to gram scale, plus derivatisations to provide further useful products, is demonstrated.
RESUMEN
The present work focuses on the synthesis and properties of a novel multifunctional cerium(III) MOF, [Ce2(data)3(DMF)4]·DMF (data2-: 2,5-diaminoterephthalate), abbreviated as NH2-Ce-MUM-2. Its crystal structure reveals an intricate 3D 4,5-connected framework with a xah topology. This MOF features unique properties, such as open metal sites, presence of free amino groups, and high stability. Two main applications of NH2-Ce-MUM-2 were investigated: (i) as a heterogeneous catalyst in the CO2 fixation into cyclic carbonates and (ii) as a material with third-order nonlinear optical activity. As a model reaction, the cycloaddition of CO2 to propylene oxide to give the corresponding cyclic carbonate was explored under mild conditions, at the atmospheric pressure of carbon dioxide and in the absence of cocatalyst and added solvent. Various reaction parameters were investigated toward optimization and exploration of substrate scope, revealing up to 99% product yields of cyclic carbonate products. Besides, the structure of NH2-Ce-MUM-2 is highly stable, permitting its recyclability and reusability in further catalytic experiments. The significant contributions of free amino groups and open metal sites within this catalyst were particularly considered when proposing a potential mechanism for the reaction. Z-Scan measurements were used to evaluate the nonlinear optical (NLO) properties of NH2-Ce-MUM-2 at various laser intensities. A high two-photon absorption (TPA) under greater incident intensities shows that NH2-Ce-MUM-2 might be applicable in optical switching devices. Besides, the self-focusing effects of NH2-Ce-MUM-2 under various incident intensities were highlighted by the nonlinear index of refraction (n2). By reporting the synthesis and characterization of a novel MOF, along with its highly promising catalytic and NLO behavior, the current study introduces an additional example of multifunctional material into a growing family of metal-organic frameworks.
RESUMEN
The third-order nonlinear optical (NLO) properties of a series of platinum diimine-dithiolate complexes [Pt(N^N)(S^S)] were investigated by means of Z-scan measurements, revealing second hyperpolarizability values up to 10-29 esu, saturable absorption properties, and nonlinear refractive behaviour, which were rationalized also by means of DFT calculations.
RESUMEN
A new isoxazole-based iodo-noium salt, C13H13INO5 +·C2F3O2 -, has been synthesized and structurally characterized. In the crystal, ions are linked by short Iâ¯O contacts to form a neutral tetra-ion aggregate. These combine with C-Hâ¯F and C-Hâ¯O inter-actions to form double-layered two-dimensional sheets in the (001) plane.