Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Pharm Biomed Anal ; 239: 115916, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38134704

RESUMEN

In the early stages of drug discovery, beyond the biological activity screening, determining the physicochemical properties that affect the distribution of molecules in the human body is an essential step. Plasma protein binding (PPB) is one of the most important investigated endpoints. Nevertheless, the methodology for measuring %PPB is significantly less popular and standardized than other physicochemical properties, like lipophilicity. Here, we proposed how to modify protocols presented by Valko into column safety conditions and evaluated their robustness using fractional factorial design. For robustness testing, four factors were selected: column temperature, mobile phase flow rate, maximum isopropanol concentration in the mobile phase, and buffer pH. Elaborate methods have been applied for the analysis of HSA affinity for three groups of antibiotic-oriented substances that vary in chemical structure: fluoroquinolones, sulfonamides, and tetrazole derivatives. Furthermore, based on the reversed-phase chromatography the workflow of pilot studies was proposed to select molecules that have high affinity to HSA and can not be eluted from the HSA column using the concentration of organic modifier recommended by the column manufacturer.


Asunto(s)
Quimiometría , Albúmina Sérica Humana , Humanos , Cromatografía Líquida de Alta Presión/métodos , Albúmina Sérica Humana/metabolismo , Proteínas Sanguíneas/metabolismo , Unión Proteica
2.
Antibiotics (Basel) ; 12(12)2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38136725

RESUMEN

The rapid increase in strains that are resistant to antibiotics requires new active compounds to be found whose mechanism of action on bacteria is different to those that are currently known. Of particular interest are compounds that occur in plants as secondary metabolites. The focus of this study concerns the examination of the effects of synthetic cinnamic acid derivatives, with 4-chloro-2-mercaptobenzenesulfonamide moiety on Enterococcus spp. with HLAR (high-level aminoglycoside resistance) and VRE (vancomycin-resistant Enterococcus) mechanisms. The minimum inhibitory concentration (MIC) values of the tested compounds were determined using the serial dilution method for Enterococcus spp. groups, and the most active compounds were as follows: 16d, 17c, 16a, 16c and 16f (2-4 µg/mL). These compounds, at a concentration of 4 × MIC, inhibited the biofilm formation of HLAR strains (70 to 94%). At concentrations of 2 × MIC and 4 × MIC, they also inhibited the growth of VRE strains (42 to 96%). The best effect produced on the formed biofilm was demonstrated by compound 16f (from 62% MIC concentration to 89% 4 × MIC concentration) on the tested HLAR strains. In vitro studies, using the peripheral blood of domestic sheep, demonstrated the stable bacteriostatic activity of the tested compounds against Enterococcus spp. The compounds 16a, 16c, 16d, 16f and 17c showed synergism and additivity with ampicillin, streptomycin, gentamicin and vancomycin against resistant strains of Enterococcus spp. The tested compounds, when combined, reduce the MIC for antibiotics by 800 to 10,000 times for HLAR strains and by 8 to 10,000 times for VRE strains. The MIC of the tested compounds, in combination with antibiotics, is reduced 2-16-fold for HLAR strains and 2-32-fold for VRE strains. These studies demonstrate the potential for the therapeutic use of synthetic, cinnamic acid derivatives, with 4-chloro-2-mercaptobenzenesulfonamide moiety, to work against clinical strains of Enterococcus spp.

3.
Int J Mol Sci ; 24(11)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37298719

RESUMEN

A series of novel 2-alkythio-4-chloro-N-[imino-(heteroaryl)methyl]benzenesulfonamide derivatives, 8-24, were synthesized in the reaction of the N-(benzenesulfonyl)cyanamide potassium salts 1-7 with the appropriate mercaptoheterocycles. All the synthesized compounds were evaluated for their anticancer activity in HeLa, HCT-116 and MCF-7 cell lines. The most promising compounds, 11-13, molecular hybrids containing benzenesulfonamide and imidazole moieties, selectively showed a high cytotoxic effect in HeLa cancer cells (IC50: 6-7 µM) and exhibited about three times less cytotoxicity against the non-tumor cell line HaCaT cells (IC50: 18-20 µM). It was found that the anti-proliferative effects of 11, 12 and 13 were associated with their ability to induce apoptosis in HeLa cells. The compounds increased the early apoptotic population of cells, elevated the percentage of cells in the sub-G1 phase of the cell cycle and induced apoptosis through caspase activation in HeLa cells. For the most active compounds, susceptibility to undergo first-phase oxidation reactions in human liver microsomes was assessed. The results of the in vitro metabolic stability experiments indicated values of the factor t½ for 11-13 in the range of 9.1-20.3 min and suggested the hypothetical oxidation of these compounds to sulfenic and subsequently sulfinic acids as metabolites.


Asunto(s)
Antineoplásicos , Humanos , Estructura Molecular , Relación Estructura-Actividad , Células HeLa , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/química , Línea Celular Tumoral , Apoptosis , Relación Dosis-Respuesta a Droga , Bencenosulfonamidas
4.
Molecules ; 28(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37049849

RESUMEN

Cinnamic acid is a plant metabolite with antimicrobial, anticancer, and antioxidant properties. Its synthetic derivatives are often more effective in vitro than parent compounds due to stronger biological activities. In our study, we synthesized ten new N-(4-chloro-2-mercapto-5-methylphenylsulfonyl)cinnamamide derivatives, containing two pharmacophore groups: cinnamic acid moiety and benzenesulfonamide. The antimicrobial activity of the obtained compounds was estimated using different types of Gram-positive and Gram-negative bacteria, fungus species of Candida albicans, as well as clinical strains. The compounds were evaluated on biofilm formation and biofilm formed by Staphylococcus clinical strains (methicillin-resistance S. aureus MRSA and methicillin-resistance coagulase-negative Staphylococcus MRCNS). Furthermore, blood bacteriostatic activity test was performed using S. aureus and S. epidermidis. In cytotoxic study, we performed in vitro hemolysis assay on domestic sheep peripheral blood and MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay on human cervical HeLa, ovarian SKOV-3, and breast MCF-7 cancer cell lines. We also estimated antioxidant activity of ten compounds with 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) assays. Our results showed a significant antimicrobial activity of the compounds. All of them were active on Staphylococcus and Enterococcus species (MIC was 1-4 µg/mL). The compounds 16d and 16e were the most active on staphylococci clinical strains and efficiently inhibited the biofilm formation and biofilm already formed by the clinical staphylococci. Moreover, the hemolytic properties of the tested compounds occurred in higher quantities (>32.5 µg/mL) than the concentrations that inhibited both the growth of bacteria in the blood and the formation and growth of biofilm. The results of MTT assay showed that compounds 16c, 16d, 17a, and 17d demonstrated the best activity on the cancer cells (the IC50 values were below 10 µg/mL). Compound 16f was the least active on the cancer cells (IC50 was > 60 µg/mL). Antiradical tests revealed that compounds 16f and 17d had the strongest antioxidant properties within the tested group (IC50 was 310.50 ± 0.73 and 574.41 ± 1.34 µg/mL in DPPH, respectively, and 597.53 ± 1.3 and 419.18 ± 2.72 µg/mL in ABTS assay, respectively). Our study showed that the obtained cinnamamide derivatives can be used as potential antimicrobial therapeutic agents.


Asunto(s)
Antiinfecciosos , Antioxidantes , Animales , Ovinos , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Antibacterianos/farmacología , Staphylococcus aureus , Meticilina/farmacología , Pruebas de Sensibilidad Microbiana , Bacterias Gramnegativas , Bacterias Grampositivas , Antiinfecciosos/farmacología , Antiinfecciosos/química
5.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36901869

RESUMEN

The untypical course of reaction between chalcones and benzenesulfonylaminoguanidines led to the new 3-(2-alkylthio-4-chloro-5-methylbenzenesulfonyl)-2-(1-phenyl-3-arylprop-2-enylideneamino)guanidine derivatives 8-33. The new compounds were tested in vitro for their impact on the growth of breast cancer cells MCF-7, cervical cancer cells HeLa and colon cancer cells HCT-116 by MTT assay. The results revealed that the activity of derivatives is strongly related to the presence of hydroxy group in the benzene ring at the 3-arylpropylidene fragment. The most cytotoxic compounds 20 and 24 displayed mean IC50 values of 12.8 and 12.7 µM, respectively, against three tested cell lines and were almost 3- and 4-fold more active toward MCF-7 and HCT-116 when compared with non-malignant HaCaT cells. Furthermore, compound 24 induced apoptosis in cancer cells and caused a decrease of mitochondrial membrane potential as well as an increase of cells in sub-G1 phase in contrast to its inactive analog 31. The strongest activity against the most sensitive HCT-116 cell line was found for compound 30 (IC50 = 8 µM), which was 11-fold more effective in the growth inhibition of HCT-116 cells than those of HaCaT cells. Based on this fact, the new derivatives may be promising leading structures for the search for agents for the treatment of colon cancer.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Humanos , Relación Estructura-Actividad , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/farmacología , Células HeLa , Apoptosis , Guanidinas/farmacología , Estructura Molecular , Línea Celular Tumoral
6.
Int J Mol Sci ; 25(1)2023 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-38203445

RESUMEN

Chalcones and their derivatives, both natural and synthetic, exhibit diverse biological activities. In this study, we focused on designing and synthesizing (E)-2,4-dichloro-N-(4-cinnamoylphenyl)-5-methylbenzenesulfonamides 4-8 with the following two pharmacophore groups: 2,4-dichlorobenzenesulfonamide and chalcone. The obtained compounds displayed notable anticancer effects on various human cancer cells, such as cervical HeLa, acute promyelocytic leukemia HL-60, and gastric adenocarcinoma AGS, when assessed with the MTT test. The activity of all compounds against cancer cells was significant, and the obtained IC50 values were in the range of 0.89-9.63 µg/mL. Among all the tested compounds, derivative 5 showed the highest activity on the AGS cell line. Therefore, it was tested for cell cycle inhibition, induction of mitochondrial membrane depolarization, and activation of caspase-8 and -9. These results showed that this compound strongly arrested the cell cycle in the subG0 phase, depolarized the mitochondrial membrane, and activated caspase-8 and -9. Similar to the anticancer effects, all the obtained compounds 4-8 were also assessed for their antioxidant activity. The highest antiradical effect was demonstrated for derivative 5, which was able to inhibit DPPH and ABTS radicals. All examined compounds showed dose-dependent activity against neutrophil elastase. Notably, derivatives 7 and 8 demonstrated inhibitory properties similar to oleanolic acid, with IC50 values of 25.61 ± 0.58 and 25.73 ± 0.39 µg/mL, respectively. To determine the antibacterial activity of derivatives 4-8, the minimum bacteriostatic concentration (MIC) values were estimated (>500 µg/mL for all the tested bacterial strains). The findings demonstrate the substantial potential of sulfonamide-based chalcone 5 as a promising drug in anticancer therapy.


Asunto(s)
Chalcona , Chalconas , Humanos , Chalconas/farmacología , Antioxidantes/farmacología , Caspasa 8 , Células HL-60
7.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35806186

RESUMEN

In the search for new compounds with antitumor activity, new potential anticancer agents were designed as molecular hybrids containing the structures of a triazine ring and a sulfonamide fragment. Applying the synthesis in solution, a base of new sulfonamide derivatives 20-162 was obtained by the reaction of the corresponding esters 11-19 with appropriate biguanide hydrochlorides. The structures of the compounds were confirmed by spectroscopy (IR, NMR), mass spectrometry (HRMS or MALDI-TOF/TOF), elemental analysis (C,H,N) and X-ray crystallography. The cytotoxic activity of the obtained compounds toward three tumor cell lines, HCT-116, MCF-7 and HeLa, was examined. The results showed that some of the most active compounds belonged to the R1 = 4-trifluoromethylbenzyl and R1 = 3,5-bis(trifluoromethyl)benzyl series and exhibited IC50 values ranging from 3.6 µM to 11.0 µM. The SAR relationships were described, indicating the key role of the R2 = 4-phenylpiperazin-1-yl substituent for the cytotoxic activity against the HCT-116 and MCF-7 lines. The studies regarding the mechanism of action of the active compounds included the assessment of the inhibition of MDM2-p53 interactions, cell cycle analysis and apoptosis induction examination. The results indicated that the studied compounds did not inhibit MDM2-p53 interactions but induced G0/G1 and G2/M cell cycle arrest in a p53-independent manner. Furthermore, the active compounds induced apoptosis in cells harboring wild-type and mutant p53. The compound design was conducted step by step and assisted by QSAR models that correlated the activity of the compounds against the HCT-116 cell line with molecular descriptors.


Asunto(s)
Antineoplásicos , Bencenosulfonatos , Triazinas , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis , Bencenosulfonatos/química , Bencenosulfonatos/farmacología , Línea Celular Tumoral , Proliferación Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Células HCT116 , Humanos , Células MCF-7 , Estructura Molecular , Relación Estructura-Actividad , Sulfonamidas/química , Triazinas/farmacología , Proteína p53 Supresora de Tumor/metabolismo
8.
Molecules ; 27(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35807212

RESUMEN

Sulfonamides are a classic group of chemotherapeutic drugs with a broad spectrum of pharmacological action, including anticancer activity. In this work, reversed-phase high-performance liquid chromatography and biomimetic chromatography were applied to characterize the lipophilicity of sulfonamide derivatives with proven anticancer activities against human colon cancer. Chromatographically determined lipophilicity parameters were compared with obtained logP, employing various computational approaches. Similarities and dissimilarities between experimental and computational logP were studied using principal component analysis, cluster analysis, and the sum of ranking differences. Furthermore, quantitative structure-retention relationship modeling was applied to understand the influences of sulfonamide's molecular properties on lipophilicity and affinity to phospholipids.


Asunto(s)
Quimiometría , Cromatografía de Fase Inversa , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa/métodos , Análisis por Conglomerados , Humanos , Análisis de Componente Principal , Relación Estructura-Actividad Cuantitativa , Sulfonamidas/farmacología
9.
Bioorg Chem ; 104: 104309, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33011532

RESUMEN

A new series of N-(aryl/heteroaryl)-2-chlorobenzenesulfonamide derivatives 4-21 have been synthesized, and evaluated at the National Cancer Institute (USA) for their in vitro activities against a panel of 60 different human cancer cell lines. Among them, compounds 16, 20 and 21 exhibited remarkable cytotoxic activity against numerous human cancer cell lines. We found that sulfonamide derivative 21 appeared to be more selective than compounds 16 and 20. In comparison to compounds 16 and 20 it showed higher cytotoxic activity against A549 non-small cell lung adenocarcinoma and HCT-116 colon carcinoma cells and was less toxic to HEK-293 human embryonic kidney cells and HaCaT immortalized human keratinocytes. Treatment of A549 and HCT-116 cells with compound 21 resulted in the G0/G1-cell cycle arrest with a concomitant increase in p53 and p21 protein levels. Moreover, compound 21 led to ATP depletion and disruption of the mitochondrial membrane potential in both studied cell lines. Our results suggest that 2,4-dichloro-N-(quinolin-8-yl and/or 1H-indazol-7-yl)benzenesulfonamides serve as novel promising anticancer agents.


Asunto(s)
Antineoplásicos/farmacología , Clorobencenos/farmacología , Sulfonamidas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Clorobencenos/síntesis química , Clorobencenos/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HEK293 , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Estructura Molecular , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química
10.
Int J Mol Sci ; 21(8)2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32331219

RESUMEN

A series of novel 2-[(4-amino-6-R2-1,3,5-triazin-2-yl)methylthio]-4-chloro-5-methyl-N-(5-R1-1H-benzo[d]imidazol-2(3H)-ylidene)benzenesulfonamides 6-49 was synthesized by the reaction of 5-substituted ethyl 2-{5-R1-2-[N-(5-chloro-1H-benzo[d]imidazol-2(3H)-ylidene)sulfamoyl]-4-methylphenylthio}acetate with appropriate biguanide hydrochlorides. The most active compounds, 22 and 46, showed significant cytotoxic activity and selectivity against colon (HCT-116), breast (MCF-7) and cervical cancer (HeLa) cell lines (IC50: 7-11 µM; 15-24 µM and 11-18 µM), respectively. Further QSAR (Quantitative Structure-Activity Relationships) studies on the cytotoxic activity of investigated compounds toward HCT-116, MCF-7 and HeLa were performed by using different topological (2D) and conformational (3D) molecular descriptors based on the stepwise multiple linear regression technique (MLR). The QSAR studies allowed us to make three statistically significant and predictive models for them. Moreover, the molecular docking studies were carried out to evaluate the possible binding mode of the most active compounds, 22 and 46, within the active site of the MDM2 protein.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Técnicas de Química Sintética , Modelos Moleculares , Relación Estructura-Actividad Cuantitativa , Sulfonamidas/síntesis química , Sulfonamidas/farmacología , Dominio Catalítico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ligandos , Conformación Molecular , Simulación del Acoplamiento Molecular , Estructura Molecular , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/química , Bencenosulfonamidas
11.
Int J Mol Sci ; 21(6)2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-32210190

RESUMEN

To learn more about the structure-activity relationships of (E)-3-(5-styryl-1,3,4-oxadiazol-2-yl)benzenesulfonamide derivatives, which in our previous research displayed promising in vitro anticancer activity, we have synthesized a group of novel (E)-5-[(5-(2-arylvinyl)-1,3,4-oxadiazol-2-yl)]-4-chloro-2-R1-benzenesulfonamides 7-36 as well as (E)-4-[5-styryl1,3,4-oxadiazol-2-yl]benzenesulfonamides 47-50 and (E)-2-(2,4-dichlorophenyl)-5-(2-arylvinyl)-1,3,4-oxadiazols 51-55. All target derivatives were evaluated for their anticancer activity on HeLa, HCT-116, and MCF-7 human tumor cell lines. The obtained results were analyzed in order to explain the influence of a structure of the 2-aryl-vinyl substituent and benzenesulfonamide scaffold on the anti-tumor activity. Compound 31, bearing 5-nitrothiophene moiety, exhibited the most potent anticancer activity against the HCT-116, MCF-7, and HeLa cell lines, with IC50 values of 0.5, 4, and 4.5 µM, respectively. Analysis of structure-activity relationship showed significant differences in activity depending on the substituent in position 3 of the benzenesulfonamide ring and indicated as the optimal meta position of the sulfonamide moiety relative to the oxadizole ring. In the next stage, chemometric analysis was performed basing on a set of computed molecular descriptors. Hierarchical cluster analysis was used to examine the internal structure of the obtained data and the quantitative structure-activity relationship (QSAR) analysis with multiple linear regression (MLR) method allowed for finding statistically significant models for predicting activity towards all three cancer cell lines.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Sulfonamidas/química , Sulfonamidas/farmacología , Antineoplásicos/síntesis química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Técnicas de Química Sintética , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Bencenosulfonamidas
12.
Int J Mol Sci ; 21(1)2019 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-31892248

RESUMEN

Rising resistance of pathogenic bacteria reduces the options of treating hospital and non-hospital bacterial infections. There is a need to search for newer chemotherapies that will show antimicrobial ability against planktonic cells as well as bacterial biofilms. We have synthesized a series of N-(2-arylmethylthio-4-chloro-5-methylbenzenesulfonyl)amides, namely, molecular hybrids, which include a 2-mercaptobenzenosulfonamide fragment and either cinnamic or cyclohexylpropionic acid residues. The antimicrobial activity of compounds 8‒17 was evaluated on Gram-positive, Gram-negative bacteria and fungal species. Experiments took into account investigation of antibacterial activity against planktonic cells as well as biofilms. Compounds 8‒17 showed high bacteriostatic activity against staphylococci, with the most active molecules 10 and 16 presenting low MIC values of 4-8 µg/mL against reference methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) strains as well as clinical isolates. Compounds 10 and 16 also showed an ability to inhibit biofilms formed by MRSA and MSSA. The potential of 10 and 16 as antibiofilm agents was supported by cytotoxicity assays that indicated no cytotoxic effect either on normal cells of human keratinocytes or on human cancer cells, including cervical, colon, and breast cancer lines.


Asunto(s)
Amidas/farmacología , Antiinfecciosos/farmacología , Staphylococcus aureus/efectos de los fármacos , Biopelículas/efectos de los fármacos , Línea Celular Tumoral , Células HCT116 , Células HeLa , Humanos , Células MCF-7 , Pruebas de Sensibilidad Microbiana/métodos , Plancton/efectos de los fármacos
13.
Behav Brain Res ; 359: 671-685, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30267715

RESUMEN

Recent preclinical studies point to muscarinic and GABAB receptors as novel therapeutic targets for the treatment of schizophrenia. This study was aimed to assess the role of muscarinic and GABAB receptor interactions in animal models of schizophrenia, using positive allosteric modulators (PAMs) of GABAB receptor (GS39783), muscarinic M4 (VU0152100) and M5 (VU0238429) receptor, and partial allosteric agonist of M1 receptor (VU0357017). DOI-induced head twitches, social interaction and novel object recognition tests were used as the models of schizophrenia. Analyses of DOI-induced increases in sEPSCs (spontaneous excitatory postsynaptic currents) were performed as complementary experiments to the DOI-induced head twitch studies. Haloperidol-induced catalepsy and the rotarod test were used to examine the adverse effects of the drugs. All three activators of muscarinic receptors were active in DOI-induced head twitches. When administered together with GS39783 in subeffective doses, only the co-administration of VU0152100 and GS39783 was effective. The combination also reduced the frequency but not the amplitude of DOI-induced sEPSCs. Neither VU0357017 nor VU0238429 were active in social interaction test when given alone, and also the combination of VU0152100 and GS39783 failed to reverse MK-801-induced deficits observed in this test. All muscarinic activators when administered alone or in combination with GS39783 reversed the MK-801-induced disruption of memory in the novel object recognition test, and their actions were blocked by specific antagonists. None of the tested compounds or their combinations influenced the motor coordination of the animals. The compounds had no effect on haloperidol-induced catalepsy and did not induce catalepsy when administered alone. Pharmacokinetic analysis confirmed lack of possible drug-drug interactions after combined administration of GS39783 with VU0357017 or VU0152100; however, when the drug was co-administered with VU0238429 its ability to pass the blood-brain barrier slightly decreased, suggesting potential drug-drug interactions. Our data show that modulation of cholinergic and GABAergic systems can potentially be beneficial in the treatment of the positive and cognitive symptoms of schizophrenia without inducing the adverse effects typical for presently used antipsychotics.


Asunto(s)
Antipsicóticos/farmacología , Neurotransmisores/farmacología , Receptores de GABA-B/metabolismo , Receptores Muscarínicos/metabolismo , Esquizofrenia/tratamiento farmacológico , Regulación Alostérica , Animales , Antipsicóticos/farmacocinética , Benzamidas/farmacocinética , Benzamidas/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Ciclopentanos/farmacocinética , Ciclopentanos/farmacología , Modelos Animales de Enfermedad , Quimioterapia Combinada , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Indoles/farmacocinética , Indoles/farmacología , Masculino , Ratones , Neurotransmisores/farmacocinética , Piridinas/farmacocinética , Piridinas/farmacología , Pirimidinas/farmacocinética , Pirimidinas/farmacología , Esquizofrenia/metabolismo , Tiofenos/farmacocinética , Tiofenos/farmacología
14.
Monatsh Chem ; 149(10): 1885-1898, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30237621

RESUMEN

ABSTRACT: A new series of 2-alkylthio-N-(quinazolin-2-yl)benzenesulfonamide derivatives have been synthesized and evaluated in vitro for their antiproliferative activity by MTT assay against cancer cell lines HCT-116, MCF-7, and HeLa as well as the NCI-60 human tumor cell lines screen. In NCI screen, three compounds inhibited approximately 50% growth of RPMI-8226 and A549/ATCC cell lines. The mean of IC50 calculated in MTT assays for three tested cell lines was about 45 µM for four compounds. The QSAR allowed finding statistically significant OPLS models for HeLa cell line. Metabolic stability in vitro studies indicated favorable and unfavorable structural elements. The good metabolic stability, with t1/2 higher than 40 min, was observed for three derivatives, which together with their antiproliferative activity and good ADMET profile, makes them good leading structures for further research.

15.
J Enzyme Inhib Med Chem ; 33(1): 1430-1443, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30220229

RESUMEN

In this work, a target-based drug screening method is proposed exploiting the synergy effect of ligand-based and structure-based computer-assisted drug design. The new method provides great flexibility in drug design and drug candidates with considerably lower risk in an efficient manner. As a model system, 45 sulphonamides (33 training, 12 testing ligands) in complex with carbonic anhydrase IX were used for development of quantitative structure-activity-lipophilicity (property)-relationships (QSPRs). For each ligand, nearly 5,000 molecular descriptors were calculated, while lipophilicity (logkw) and inhibitory activity (logKi) were used as drug properties. Genetic algorithm-partial least squares (GA-PLS) provided a QSPR model with high prediction capability employing only seven molecular descriptors. As a proof-of-concept, optimal drug structure was obtained by inverting the model with respect to reference drug properties. 3509 ligands were ranked accordingly. Top 10 ligands were further validated through molecular docking. Large-scale MD simulations were performed to test the stability of structures of selected ligands obtained through docking complemented with biophysical experiments.


Asunto(s)
Antígenos de Neoplasias/química , Anhidrasa Carbónica IX/química , Descubrimiento de Drogas/métodos , Simulación del Acoplamiento Molecular , Sulfanilamidas/química , Anhidrasa Carbónica IX/antagonistas & inhibidores , Anhidrasa Carbónica IX/síntesis química , Cromatografía Liquida , Sistemas de Liberación de Medicamentos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Relación Estructura-Actividad Cuantitativa , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Sulfanilamida
16.
Eur J Med Chem ; 155: 670-680, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-29936354

RESUMEN

A series of new N'-(2-alkylthio-4-chloro-5-methylbenzenesulfonyl)-1-(5-phenyl-1H-pyrazol-1-yl)amidine derivatives have been synthesized and evaluated in vitro by MTT assays for their antiproliferative activity against cell lines of colon cancer HCT-116, cervical cancer HeLa and breast cancer MCF-7. The studied compounds display selective activity mainly against HCT-116 and HeLa cells. Thus, five compounds show selective cytotoxic effect against HCT-116 (IC50 = 3-10 µM) and HeLa (IC50 = 7 µM). Importantly, the noticed values of IC50 for four compounds are almost 4-fold lower for HeLa than non-malignant HaCaT cells. More-in-depth biological research revealed that the treatment of HCT-116 and HeLa with active compound resulted in increased numbers of cells in sub-G1 phase in a time dependent manner, while non-active derivative does not influence cell cycle. Metabolic stability assays using liver microsomes and NADPH provide important information on compounds susceptibility to phase 1 biotransformation reactions.


Asunto(s)
Antineoplásicos/farmacología , Pirazoles/farmacología , Antineoplásicos/química , Antineoplásicos/metabolismo , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Modelos Moleculares , Estructura Molecular , Pirazoles/química , Pirazoles/metabolismo , Relación Estructura-Actividad , Células Tumorales Cultivadas
17.
Int J Mol Sci ; 19(5)2018 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-29772699

RESUMEN

A series of N-(aryl/heteroaryl)-4-(1H-pyrrol-1-yl)benzenesulfonamides were synthesized from 4-amino-N-(aryl/heteroaryl)benzenesulfonamides and 2,5-dimethoxytetrahydrofuran. All the synthesized compounds were evaluated for their anticancer activity on HeLa, HCT-116, and MCF-7 human tumor cell lines. Compound 28, bearing 8-quinolinyl moiety, exhibited the most potent anticancer activity against the HCT-116, MCF-7, and HeLa cell lines, with IC50 values of 3, 5, and 7 µM, respectively. The apoptotic potential of the most active compound (28) was analyzed through various assays: phosphatidylserine translocation, cell cycle distribution, and caspase activation. Compound 28 promoted cell cycle arrest in G2/M phase in cancer cells, induced caspase activity, and increased the population of apoptotic cells. Relationships between structure and biological activity were determined by the QSAR (quantitative structure activity relationships) method. Analysis of quantitative structure activity relationships allowed us to generate OPLS (Orthogonal Projections to Latent Structure) models with verified predictive ability that point out key molecular descriptors influencing benzenosulfonamide's activity.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Técnicas de Química Sintética , Estructura Molecular , Sulfonamidas/química , Sulfonamidas/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Molecular , Relación Estructura-Actividad Cuantitativa , Sulfonamidas/síntesis química , Bencenosulfonamidas
18.
J Enzyme Inhib Med Chem ; 33(1): 255-259, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29271264

RESUMEN

The two ß-carbonic anhydrases (CAs, EC 4.2.1.1) from the pathogenic bacterium Brucella suis, BsuCA1 and BsuCA2, were investigated for their inhibition profile with a series of pyridine-3-sulphonamide derivatives incorporating 4-hetaryl moieties. BsuCA1 was effectively inhibited by these sulphonamides with inhibition constants ranging between 34 and 624 nM. BsuCA2 was less sensitive to these inhibitors, with KIs in the range of 62 nM - > 10 µM. The nature of the 4-substituent present on the pyridine ring was the main factor influencing the inhibitory profile against both isoforms, with 4-halogenophenylpiperazin-1-yl and 3,4,5-trisubstituted-pyrazol-1-yl derivatives showing the most effective inhibition. Some of these sulphonamides were most effective bacterial CA than human (h) CA I and II inhibitors, making them selective for the prokaryotic enzymes. Investigation of bacterial CA inhibitors may be relevant for finding antibiotics with a new mechanism of action compared to the clinically used agents for which substantial drug resistance emerged.


Asunto(s)
Brucella suis/enzimología , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Piridinas/farmacología , Sulfonamidas/farmacología , Inhibidores de Anhidrasa Carbónica/síntesis química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Piridinas/síntesis química , Piridinas/química , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química
19.
Eur J Med Chem ; 143: 1931-1941, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29146134

RESUMEN

A series of novel 2-(2-arylmethylthio-4-chloro-5-methylbenzenesulfonyl)-1-(6-substituted-4-chloro-1,3,5-triazin-2-ylamino)guanidine derivatives 9-20 have been synthesized by substitution of chlorine atom at the 1,3,5-triazine ring in compounds 5-8 with 3- or 4-aminobenzenesulfonamide and 4-(aminomethyl)benzenesulfonamide hydrochloride. All the synthesized compounds were evaluated for their inhibitory activity toward hCA I, II, IX and XII as well as anticancer activity against HeLa, HCT-116 and MCF-7 human tumor cell lines. The investigated compounds showed weak inhibitory potency against the human CA I, while activity toward hCA II was differentiated and depended on structure of inhibitor (KI: 5.4-933.1 nM). Compounds containing the 4-sulfamoylphenyl moiety (9-12) exhibited the strongest inhibitory activity against hCA IX with KI values from 37.1 to 42.9 nM, as well as against hCA XII in range of 31-91.9 nM. The most promising compound 12 (KI = 41 nM) showed the highest selectivity toward hCA IX versus hCA I (hCA I/hCA IX = 18) and hCA II (hCA II/hCA IX = 4). Compound 12 displayed prominent cytotoxic effect selectively toward HeLa cancer cells (IC50 = 17 µM) and did not exhibit toxicity to the non-cancerous HaCaT cells. In silico analysis suggested that despite the lack of a single binding pose, the selective affinity is conferred by specific interactions with an arginine moiety, as well as better-defined binding modes within the active site.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Anhidrasa Carbónica/farmacología , Guanidina/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Anhidrasa Carbónica I/antagonistas & inhibidores , Anhidrasa Carbónica I/metabolismo , Anhidrasa Carbónica II/antagonistas & inhibidores , Anhidrasa Carbónica II/metabolismo , Anhidrasa Carbónica IX/antagonistas & inhibidores , Anhidrasa Carbónica IX/metabolismo , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Anhidrasas Carbónicas/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Guanidina/análogos & derivados , Guanidina/química , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
20.
Molecules ; 22(11)2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29112162

RESUMEN

Candidiasis represent a serious threat for patients with altered immune responses. Therefore, we have undertaken the synthesis of compounds comprising a pyridine-3-sulfonamide scaffold and known antifungally active 1,2,4-triazole substituents. Thus a series of novel 4-substituted N-(5-amino-1H-1,2,4-triazol-3-yl)pyridine-3-sulfonamides have been synthesized by multistep reactions starting from 4-chloropyridine-3-sulfonamide via N'-cyano-N-[(4-substitutedpyridin-3-yl)sulfonyl]carbamimidothioates which were further converted with hydrazine hydrate to the corresponding 1,2,4-triazole derivatives 26-36. The final compounds were evaluated for antifungal activity against strains of the genera Candida, Geotrichum, Rhodotorula, and Saccharomycess isolated from patients with mycosis. Many of them show greater efficacy than fluconazole, mostly towards Candida albicans and Rhodotorula mucilaginosa species, with MIC values ≤ 25 µg/mL. A docking study of the most active compounds 26, 34 and 35 was performed showing the potential mode of binding to Candida albicans lanosterol 14α-demethylase. Also in vitro cytotoxicity of selected compounds have been evaluated on the NCI-60 cell line panel.


Asunto(s)
Antifúngicos/síntesis química , Antifúngicos/farmacología , Sulfonamidas/síntesis química , Sulfonamidas/farmacología , Antifúngicos/química , Candida/efectos de los fármacos , Diseño de Fármacos , Geotrichum/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Micosis/microbiología , Rhodotorula/efectos de los fármacos , Relación Estructura-Actividad , Sulfonamidas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA