Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38891473

RESUMEN

Polymers have become an important part of everyday life, but most of the polymers currently used are petroleum-based. This poses an environmental problem, especially with respect to products that are quickly discarded. For this reason, current packaging development focuses on sustainable materials as an alternative to synthetic ones. Nanocellulose, a relatively new material derived from cellulose, has unique properties such as high strength, low density, high surface area, and good barrier properties, making it popular in various applications. Additionally, 3D printing technologies have become an important part of industrial and commercial processes, enabling the realization of innovative ideas and functionalities. The main aim of this research was to develop a hydrogel of bacterial nanocellulose with suitable rheological properties for the 3D printing of polymer foils. Three variations of bacterial nanocellulose hydrogel differing in ratios of bacterial nanocellulose to cationic starch were produced. The rheological studies confirmed the suitability of the hydrogels for 3D printing. Foils were successfully 3D-printed using a modified 3D printer. The physical-mechanical, surface, and optical properties of the foils were determined. All foils were homogeneous with adequate mechanical properties. The 3D-printed foils with the highest amount of cationic starch were the most homogeneous and transparent and, despite their rigidity, very strong. All foils were semi-transparent, had a non-glossy surface, and retained poor water wettability.

2.
Polymers (Basel) ; 16(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38931970

RESUMEN

The physical properties as well as thermal and electrical stability of copper particles can be improved by surface protection, which mainly depends on the coating material. Our study was, therefore, focused on the rheological, thermal, mechanical and electrical characterization of polymer composites by comparing uncoated (Cu), silver-coated (Cu@Ag) and silica-coated (Cu@Si) copper flakes in low-density polyethylene at various volume concentrations (up to 40%). Interactions among particles were investigated by rheological properties, as these indicate network formation (geometrical entanglement), which is important for mechanical reinforcement as well as establishing an electric pathway (electrical percolation). The results showed that geometrical and electrical percolation were the same for Cu and Cu@Si, ~15%, while, surprisingly, Cu@Ag exhibited much lower percolation, ~7.5%, indicating the fusion of the Ag coating material, which also decreased crystal growth (degree of crystallinity). Furthermore, the magnitude of the rheological and mechanical response remained the same for all investigated materials, indicating that the coating materials do not provide any load transfer capabilities. However, they profoundly affect electron transfer, in that, Cu@Ag exhibited superior conductivity (74.4 S/m) compared to Cu (1.7 × 10-4 S/m) and Cu@Si (1.5 × 10-10 S/m). The results obtained are important for the design of advanced polymer composites for various applications, particularly in electronics where enhanced electrical conductivity is desired.

3.
Int J Pharm ; 651: 123719, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38110015

RESUMEN

Filament formulation for FDM is a challenging and time-consuming process. Several pharmaceutical polymers are not feedable on their own. Due to inadequate filament formulation, 3D printed tablets can also exhibit poor uniformity of tablet attributes. To better understand filament formulation process, 23 filaments were prepared with the polymer mixing approach. To yield processable filaments, brittle and pliable polymers were combined. A 20 % addition of a pliable polymer to a brittle one resulted in filament processability and vice versa. Predictive statistical models for filament processability and uniformity of tablet attributes were established based on the mechanical and rheological properties of filaments. 15 input variables were correlated to 9 responses, which represent filament processability and tablet properties, by using multiple linear regression approach. Filament stiffness, assessed by indentation, and its square term were the only variables that determined the filament's feedability. However, the resulting model is equipment-specific since different feeding mechanism exert different forces on the filaments. Additional models with good predictive power (R2pred > 0.50) were established for tablet width uniformity, drug release uniformity, tablet disintegration time uniformity and occurrence of disintegration, which are equipment-independent outputs. Therefore, the obtained model outcomes could be used in other research endeavours.


Asunto(s)
Polímeros , Impresión Tridimensional , Solubilidad , Modelos Lineales , Comprimidos , Liberación de Fármacos , Tecnología Farmacéutica/métodos
4.
Polymers (Basel) ; 14(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36559809

RESUMEN

To decrease the amount of plastic waste, the use of recycling techniques become a necessity. However, numerous recycling cycles result in the mechanical, thermal, and chemical degradation of the polymer, which leads to an inefficient use of recycled polymers for the production of plastic products. In this study, the effects of recycling and the improvement of polymer performance with the incorporation of an additive into recycled polypropylene was studied by spectroscopic, rheological, optical, and mechanical characterization techniques. The results showed that after 20 recycling steps of mechanical processing of polypropylene, the main degradation processes of polypropylene are chain scission of polymer chains and oxidation, which can be improved by the addition of a stabilizing additive. It was shown that a small amount of an additive significantly improves the properties of the recycled polypropylene up to the 20th reprocessing cycle. The use of an additive improves the rheological properties of the recycled melt, surface properties, and time-dependent mechanical properties of solid polypropylene since it was shown that the additive acts as a hardener and additionally crosslinks the recycled polymer chains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...