Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 1732, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33741980

RESUMEN

Macrolides are a class of antibiotics widely used in both medicine and agriculture. Unsurprisingly, as a consequence of their exensive usage a plethora of resistance mechanisms have been encountered in pathogenic bacteria. One of these resistance mechanisms entails the enzymatic cleavage of the macrolides' macrolactone ring by erythromycin esterases (Eres). The most frequently identified Ere enzyme is EreA, which confers resistance to the majority of clinically used macrolides. Despite the role Eres play in macrolide resistance, research into this family enzymes has been sparse. Here, we report the first three-dimensional structures of an erythromycin esterase, EreC. EreC is an extremely close homologue of EreA, displaying more than 90% sequence identity. Two structures of this enzyme, in conjunction with in silico flexible docking studies and previously reported mutagenesis data allowed for the proposal of a detailed catalytic mechanism for the Ere family of enzymes, labeling them as metal-independent hydrolases. Also presented are substrate spectrum assays for different members of the Ere family. The results from these assays together with an examination of residue conservation for the macrolide binding site in Eres, suggests two distinct active site archetypes within the Ere enzyme family.


Asunto(s)
Antibacterianos/química , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Esterasas/química , Esterasas/genética , Macrólidos/química , Antibacterianos/farmacología , Bacterias/enzimología , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Eritromicina/química , Genes Bacterianos , Macrólidos/farmacología , Simulación del Acoplamiento Molecular , Conformación Proteica , Difracción de Rayos X
2.
Glycobiology ; 20(5): 567-75, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20065073

RESUMEN

Glycoprotein folding and degradation in the endoplasmic reticulum (ER) is mediated by the ER quality control system. Mannose trimming plays an important role by forming specific N-glycans that permit the recognition and sorting of terminally misfolded conformers for ERAD (ER-associated degradation). The EDEM (ER degradation enhancing alpha-mannosidase-like protein) subgroup of proteins belonging to the Class I alpha1,2-mannosidase family (glycosylhydrolase family 47) has been shown to enhance ERAD. We recently reported that overexpression of EDEM3 enhances glycoprotein ERAD with a concomitant increase in mannose-trimming activity in vivo. Herein, we report that overexpression of EDEM1 produces Glc(1)Man(8)GlcNAc(2) isomer C on terminally misfolded null Hong Kong alpha1-antitrypsin (NHK) in vivo. Levels of this isomer increased throughout the chase period and comprised approximately 10% of the [(3)H]mannose-labeled N-glycans on NHK after a 3-h chase. Furthermore, overexpression of EDEM1 E220Q containing a mutation in a conserved catalytic residue essential for alpha1,2-mannosidase activity did not yield detectable levels of Glc(1)Man(8)GlcNAc(2) isomer C. Yet, the same extent of NHK ERAD-enhancement was observed in both EDEM1 and EDEM1 E220Q overexpressing cells. This can be attributed to both wild-type and mutant EDEM1 inhibiting aberrant NHK dimer formation. We further analyzed the N-glycan profile of total cellular glycoproteins from HepG2 cells stably overexpressing EDEM1 and found that the relative amount of Man(7)GlcNAc(2) isomer A, which lacks the terminal B and C branch mannoses, was increased compared to parental HepG2 cells. Based on this observation, we conclude that EDEM1 activity trims mannose from the C branch of N-glycans in vivo.


Asunto(s)
Manosa/química , Manosa/metabolismo , Proteínas de la Membrana/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Células Cultivadas , Retículo Endoplásmico/química , Retículo Endoplásmico/metabolismo , Humanos , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/química , Estereoisomerismo
3.
J Biol Chem ; 281(14): 9650-8, 2006 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-16431915

RESUMEN

Quality control in the endoplasmic reticulum ensures that only properly folded proteins are retained in the cell through mechanisms that recognize and discard misfolded or unassembled proteins in a process called endoplasmic reticulum-associated degradation (ERAD). We previously cloned EDEM (ER degradation-enhancing alpha-mannosidase-like protein) and showed that it accelerates ERAD of misfolded glycoproteins. We now cloned mouse EDEM3, a soluble homolog of EDEM. EDEM3 consists of 931 amino acids and has all the signature motifs of Class I alpha-mannosidases (glycosyl hydrolase family 47) in its N-terminal domain and a protease-associated motif in its C-terminal region. EDEM3 accelerates glycoprotein ERAD in transfected HEK293 cells, as shown by increased degradation of misfolded alpha1-antitrypsin variant (null (Hong Kong)) and of TCRalpha. Overexpression of EDEM3 also greatly stimulates mannose trimming not only from misfolded alpha1-AT null (Hong Kong) but also from total glycoproteins, in contrast to EDEM, which has no apparent alpha1,2-mannosidase activity. Furthermore, overexpression of the E147Q EDEM3 mutant, which has the mutation in one of the conserved acidic residues essential for enzyme activity of alpha1,2-mannosidases, abolishes the stimulation of mannose trimming and greatly decreases the stimulation of ERAD by EDEM3. These results show that EDEM3 has alpha1,2-mannosidase activity in vivo, suggesting that the mechanism whereby EDEM3 accelerates glycoprotein ERAD is different from that of EDEM.


Asunto(s)
Retículo Endoplásmico/fisiología , Glicoproteínas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Pliegue de Proteína , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio , Clonación Molecular , Etiquetas de Secuencia Expresada , Manosa/metabolismo , Ratones , Datos de Secuencia Molecular , Solubilidad , alfa-Manosidasa/metabolismo
4.
J Biol Chem ; 279(17): 17921-31, 2004 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-14752117

RESUMEN

Kre2p/Mnt1p is a Golgi alpha1,2-mannosyltransferase involved in the biosynthesis of Saccharomyces cerevisiae cell wall glycoproteins. The protein belongs to glycosyltransferase family 15, a member of which has been implicated in virulence of Candida albicans. We present the 2.0 A crystal structures of the catalytic domain of Kre2p/Mnt1p and its binary and ternary complexes with GDP/Mn(2+) and GDP/Mn(2+)/acceptor methyl-alpha-mannoside. The protein has a mixed alpha/beta fold similar to the glycosyltransferase-A (GT-A) fold. Although the GDP-mannose donor was used in the crystallization experiments and the GDP moiety is bound tightly to the active site, the mannose is not visible in the electron density. The manganese is coordinated by a modified DXD motif (EPD), with only the first glutamate involved in a direct interaction. The position of the donor mannose was modeled using the binary and ternary complexes of other GT-A enzymes. The C1" of the modeled donor mannose is within hydrogen-bonding distance of both the hydroxyl of Tyr(220) and the O2 of the acceptor mannose. The O2 of the acceptor mannose is also within hydrogen bond distance of the hydroxyl of Tyr(220). The structures, modeling, site-directed mutagenesis, and kinetic analysis suggest two possible catalytic mechanisms. Either a double-displacement mechanism with the hydroxyl of Tyr(220) as the potential nucleophile or alternatively, an S(N)i-like mechanism with Tyr(220) positioning the substrates for catalysis. The importance of Tyr(220) in both mechanisms is highlighted by a 3000-fold reduction in k(cat) in the Y220F mutant.


Asunto(s)
Manosiltransferasas/química , Glicoproteínas de Membrana/biosíntesis , Proteínas de Saccharomyces cerevisiae/química , Sitios de Unión , Catálisis , Dominio Catalítico , Pared Celular/metabolismo , Dicroismo Circular , Cristalografía por Rayos X , Electrones , Glicoproteínas/metabolismo , Guanosina Difosfato/química , Enlace de Hidrógeno , Cinética , Manosa/química , Modelos Químicos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Oxígeno/química , Pichia/metabolismo , Plásmidos/metabolismo , Pliegue de Proteína , Estructura Terciaria de Proteína , Tirosina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA