Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Nature ; 629(8011): 370-375, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600390

RESUMEN

Roads are expanding at the fastest pace in human history. This is the case especially in biodiversity-rich tropical nations, where roads can result in forest loss and fragmentation, wildfires, illicit land invasions and negative societal effects1-5. Many roads are being constructed illegally or informally and do not appear on any existing road map6-10; the toll of such 'ghost roads' on ecosystems is poorly understood. Here we use around 7,000 h of effort by trained volunteers to map ghost roads across the tropical Asia-Pacific region, sampling 1.42 million plots, each 1 km2 in area. Our intensive sampling revealed a total of 1.37 million km of roads in our plots-from 3.0 to 6.6 times more roads than were found in leading datasets of roads globally. Across our study area, road building almost always preceded local forest loss, and road density was by far the strongest correlate11 of deforestation out of 38 potential biophysical and socioeconomic covariates. The relationship between road density and forest loss was nonlinear, with deforestation peaking soon after roads penetrate a landscape and then declining as roads multiply and remaining accessible forests largely disappear. Notably, after controlling for lower road density inside protected areas, we found that protected areas had only modest additional effects on preventing forest loss, implying that their most vital conservation function is limiting roads and road-related environmental disruption. Collectively, our findings suggest that burgeoning, poorly studied ghost roads are among the gravest of all direct threats to tropical forests.


Asunto(s)
Automóviles , Conservación de los Recursos Naturales , Agricultura Forestal , Bosques , Árboles , Clima Tropical , Asia , Conservación de los Recursos Naturales/estadística & datos numéricos , Conservación de los Recursos Naturales/tendencias , Árboles/crecimiento & desarrollo , Conjuntos de Datos como Asunto , Agricultura Forestal/métodos , Agricultura Forestal/estadística & datos numéricos , Agricultura Forestal/tendencias
3.
Sci Total Environ ; 918: 170256, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38253102

RESUMEN

The islands of Borneo and Sumatra are strongholds for biodiversity and home for many endemic species. They also have experienced amongst the highest deforestation rates globally. Both islands are undergoing massive, rapid infrastructure development, leading to further deforestation and habitat fragmentation. Here, we identify priority areas for continued functional forest connectivity across Borneo and Sumatra, using spatial models of clouded leopard (Neofelis diardi, a forest indicator species) movement, and impacts thereto from existing and future infrastructure development. We specifically measure and map the anticipated impacts on forest functional connectivity of three major infrastructure development projects (Pan Borneo Highway, Trans-Sumatran Toll Road, and the new Indonesian capital city of Nusantara). We found that core clouded leopard habitats are already highly fragmented in Sumatra, constituting only ∼13 % of the island, with potential dispersal corridors still linking some habitat fragments. In Borneo, clouded leopard core habitats cover 34 % of the island, with one large central core area and several much smaller satellite cores, which are largely unprotected (15 % protected, compared to 42 % in Sumatra). The largest negative effect on habitat connectivity was predicted for Nusantara (66 % of the total connectivity loss predicted for all three infrastructure projects), reverberating across the entirety of Borneo with the strongest effects in East Kalimantan. The Pan Borneo Highway accounted for 28 % of the total connectivity loss, affecting every province in Borneo and Brunei, with 6 % of this decrease located within protected areas. The Trans-Sumatran Toll Road had the smallest negative effect on connectivity (6 %) but only when excluding the already built segments, which, when included, produce a total negative impact similar to that of the Pan Borneo Highway.


Asunto(s)
Conservación de los Recursos Naturales , Felidae , Animales , Indonesia , Borneo , Ecosistema
5.
PLoS One ; 15(3): e0229614, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32126070

RESUMEN

The forests of Borneo-the third largest island on the planet-sustain some of the highest biodiversity and carbon storage in the world. The forests also provide vital ecosystem services and livelihood support for millions of people in the region, including many indigenous communities. The Pan-Borneo Highway and several hydroelectric dams are planned or already under construction in Sarawak, a Malaysian state comprising part of the Borneo. This development seeks to enhance economic growth and regional connectivity, support community access to services, and promote industrial development. However, the implications of the development of highway and dams for forest integrity, biodiversity and ecosystem services remained largely unreported. We assessed these development projects using fine-scale biophysical and environmental data and found several environmental and socioeconomic risks associated with the projects. The highway and hydroelectric dam projects will impact 32 protected areas including numerous key habitats of threatened species such as the proboscis monkey (Nasalis larvatus), Sarawak surili (Presbytis chrysomelas), Bornean orangutans (Pongo pygmaeus) and tufted ground squirrel (Rheithrosciurus macrotis). Under its slated development trajectory, the local and trans-national forest connectivity between Malaysian Borneo and Indonesian Borneo would also be substantially diminished. Nearly ~161 km of the Pan-Borneo Highway in Sarawak will traverse forested landscapes and ~55 km will traverse carbon-rich peatlands. The 13 hydroelectric dam projects will collectively impact ~1.7 million ha of forest in Sarawak. The consequences of planned highway and hydroelectric dams construction will increase the carbon footprint of development in the region. Moreover, many new road segments and hydroelectric dams would be built on steep slopes in high-rainfall zones and forested areas, increasing both construction and ongoing maintenance costs. The projects would also alter livelihood activities of downstream communities, risking their long-term sustainability. Overall, our findings identify major economic, social and environmental risks for several planned road segments in Sarawak-such as those between Telok Melano and Kuching; Sibu and Bintulu; and in the Lambir, Limbang and Lawas regions-and dam projects-such as Tutoh, Limbang, Lawas, Baram, Linau, Ulu Air and Baleh dams. Such projects need to be reviewed to ensure they reflect Borneo's unique environmental and forest ecosystem values, the aspirations of local communities and long-term sustainability of the projects rather than being assessed solely on their short-term economic returns.


Asunto(s)
Conservación de los Recursos Naturales/tendencias , Bosques , Desarrollo Sostenible/tendencias , Animales , Biodiversidad , Borneo , Secuestro de Carbono , Cambio Climático , Conservación de los Recursos Naturales/economía , Conservación de los Recursos Naturales/legislación & jurisprudencia , Desarrollo Económico , Ecosistema , Especies en Peligro de Extinción , Humanos , Indonesia , Malasia , Centrales Eléctricas/tendencias , Política Pública , Desarrollo Sostenible/economía , Desarrollo Sostenible/legislación & jurisprudencia
6.
Ambio ; 49(1): 74-84, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30666613

RESUMEN

Forest transitions occur when net reforestation replaces net deforestation in places. Because forest transitions can increase biodiversity and augment carbon sequestration, they appeal to policymakers contending with the degrading effects of forest loss and climate change. What then can policymakers do to trigger forest transitions? The historical record over the last two centuries provides insights into the precipitating conditions. The early transitions often occurred passively, through the spontaneous regeneration of trees on abandoned agricultural lands. Later forest transitions occurred more frequently after large-scale crisis narratives emerged and spurred governments to take action, often by planting trees on degraded, sloped lands. To a greater degree than their predecessors, latecomer forest transitions exhibit centralized loci of power, leaders with clearly articulated goals, and rapid changes in forest cover. These historical shifts in forest transitions reflect our growing appreciation of their utility for countering droughts, floods, land degradation, and climate change.


Asunto(s)
Cambio Climático , Agricultura Forestal , Conservación de los Recursos Naturales , Bosques , Árboles
7.
PLoS One ; 14(9): e0221947, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31532810

RESUMEN

The Heart of Borneo initiative has promoted the integration of protected areas and sustainably-managed forests across Malaysia, Indonesia, and Brunei. Recently, however, member states of the Heart of Borneo have begun pursuing ambitious unilateral infrastructure-development schemes to accelerate economic growth, jeopardizing the underlying goal of trans-boundary integrated conservation. Focusing on Sabah, Malaysia, we highlight conflicts between its Pan-Borneo Highway scheme and the regional integration of protected areas, unprotected intact forests, and conservation-priority forests. Road developments in southern Sabah in particular would drastically reduce protected-area integration across the northern Heart of Borneo region. Such developments would separate two major clusters of protected areas that account for one-quarter of all protected areas within the Heart of Borneo complex. Sabah has proposed forest corridors and highway underpasses as means of retaining ecological connectivity in this context. Connectivity modelling identified numerous overlooked areas for connectivity rehabilitation among intact forest patches following planned road development. While such 'linear-conservation planning' might theoretically retain up to 85% of intact-forest connectivity and integrate half of the conservation-priority forests across Sabah, in reality it is very unlikely to achieve meaningful ecological integration. Moreover, such measure would be exceedingly costly if properly implemented-apparently beyond the operating budget of relevant Malaysian authorities. Unless critical road segments are cancelled, planned infrastructure will fragment important conservation landscapes with little recourse for mitigation. This likelihood reinforces earlier calls for the legal recognition of the Heart of Borneo region for conservation planning as well as for enhanced tri-lateral coordination of both conservation and development.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Borneo , Brunei , Desarrollo Económico , Ecosistema , Bosques , Indonesia , Malasia
8.
PLoS One ; 14(7): e0219408, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31339902

RESUMEN

The island of New Guinea hosts the third largest expanse of tropical rainforest on the planet. Papua New Guinea-comprising the eastern half of the island-plans to nearly double its national road network (from 8,700 to 15,000 km) over the next three years, to spur economic growth. We assessed these plans using fine-scale biophysical and environmental data. We identified numerous environmental and socioeconomic risks associated with these projects, including the dissection of 54 critical biodiversity habitats and diminished forest connectivity across large expanses of the island. Key habitats of globally endangered species including Goodfellow's tree-kangaroo (Dendrolagus goodfellowi), Matchie's tree kangaroo (D. matschiei), and several birds of paradise would also be bisected by roads and opened up to logging, hunting, and habitat conversion. Many planned roads would traverse rainforests and carbon-rich peatlands, contradicting Papua New Guinea's international commitments to promote low-carbon development and forest conservation for climate-change mitigation. Planned roads would also create new deforestation hotspots via rapid expansion of logging, mining, and oil-palm plantations. Our study suggests that several planned road segments in steep and high-rainfall terrain would be extremely expensive in terms of construction and maintenance costs. This would create unanticipated economic challenges and public debt. The net environmental, social, and economic risks of several planned projects-such as the Epo-Kikori link, Madang-Baiyer link, Wau-Malalaua link, and some other planned projects in the Western and East Sepik Provinces-could easily outstrip their overall benefits. Such projects should be reconsidered under broader environmental, economic, and social grounds, rather than short-term economic considerations.


Asunto(s)
Desarrollo Sostenible , Biodiversidad , Conservación de los Recursos Naturales , Bosques , Geografía , Papúa Nueva Guinea , Lluvia , Riesgo
9.
Sci Rep ; 9(1): 140, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30644427

RESUMEN

Indonesian Borneo (Kalimantan) sustains ~37 million hectares of native tropical forest. Numerous large-scale infrastructure projects aimed at promoting land-development activities are planned or ongoing in the region. However, little is known of the potential impacts of this new infrastructure on Bornean forests or biodiversity. We found that planned and ongoing road and rail-line developments will have many detrimental ecological impacts, including fragmenting large expanses of intact forest. Assuming conservatively that new road and rail projects will influence only a 1 km buffer on either side, landscape connectivity across the region will decline sharply (from 89% to 55%) if all imminently planned projects proceed. This will have particularly large impacts on wide-ranging, rare species such as rhinoceros, orangutans, and elephants. Planned developments will impact 42 protected areas, undermining Indonesian efforts to achieve key targets under the Convention on Biological Diversity. New infrastructure will accelerate expansion in intact or frontier regions of legal and illegal logging and land colonization as well as illicit mining and wildlife poaching. The net environmental, social, financial, and economic risks of several imminent projects-such as parallel border roads in West, East, and North Kalimantan, new Trans-Kalimantan road developments in Central Kalimantan and North Kalimantan, and freeways and rail lines in East Kalimantan-could markedly outstrip their overall benefits. Such projects should be reconsidered in light of rigorous cost-benefit frameworks.


Asunto(s)
Ecosistema , Bosques , Planificación Social , Animales , Animales Salvajes , Biodiversidad , Borneo , Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Indonesia
10.
Glob Chang Biol ; 24(10): 4598-4613, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29855120

RESUMEN

Carbon emissions from drained peatlands converted to agriculture in South-East Asia (i.e., Peninsular Malaysia, Sumatra and Borneo) are globally significant and increasing. Here, we map the growth of South-East Asian peatland agriculture and estimate CO2 emissions due to peat drainage in relation to official land-use plans with a focus on the reducing emissions from deforestation and degradation (REDD+)-related Indonesian moratorium on granting new concession licences for industrial agriculture and logging. We find that, prior to 2010, 35% of South-East Asian peatlands had been converted to agriculture, principally by smallholder farmers (15% of original peat extent) and industrial oil palm plantations (14%). These conversions resulted in 1.46-6.43 GtCO2 of emissions between 1990 and 2010. This legacy of historical clearances on deep-peat areas will contribute 51% (4.43-11.45 GtCO2 ) of projected future peatland CO2 emissions over the period 2010-2130. In Indonesia, which hosts most of the region's peatland and where concession maps are publicly available, 70% of peatland conversion to agriculture occurred outside of known concessions for industrial plantation development, with smallholders accounting for 60% and industrial oil palm accounting for 34%. Of the remaining Indonesian peat swamp forest (PSF), 45% is not protected, and its conversion would amount to CO2 emissions equivalent to 0.7%-2.3% (5.14-14.93 Gt) of global fossil fuel and cement emissions released between 1990 and 2010. Of the peatland extent included in the moratorium, 48% was no longer forested, and of the PSF included, 40%-48% is likely to be affected by drainage impacts from agricultural areas and will emit CO2 over time. We suggest that recent legislation and policy in Indonesia could provide a means of meaningful emission reductions if focused on revised land-use planning, PSF conservation both inside and outside agricultural concessions, and the development of agricultural practices based on rehabilitating peatland hydrological function.


Asunto(s)
Contaminantes Atmosféricos , Carbono , Conservación de los Recursos Naturales , Suelo , Agricultura , Asia Sudoriental , Bosques
11.
Curr Biol ; 28(11): R650-R651, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29731303

RESUMEN

Nater et al.[1] recently identified a new orangutan species (Pongo tapanuliensis) in northern Sumatra, Indonesia - only the seventh described species of living great ape. The population of this critically-endangered species is perilously small, at only ∼800 individuals [1], ranking it among the planet's rarest animals. We assert that P. tapanuliensis is highly vulnerable to extinction because its remaining habitat is small, fragmented and poorly protected. While road incursions within its habitat are modest - road density is only one-eighth that of northern Sumatra - over one-fifth of its habitat is zoned for agricultural conversion or is composed of mosaic agricultural and regrowth/degraded forest. Additionally, a further 8% will be affected by flooding and infrastructure development for a hydroelectric project. We recommend urgent steps to increase the chance that P. tapanuliensis will persist in the wild.


Asunto(s)
Pongo pygmaeus , Pongo , Animales , Ecosistema , Genómica , Indonesia
12.
Curr Biol ; 27(20): R1130-R1140, 2017 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-29065299

RESUMEN

It is projected that 25 million km of new paved roads will be developed globally by 2050 - enough to encircle the planet more than 600 times. Roughly 90% of new roads will be built in developing nations, frequently in tropical and subtropical regions with high biodiversity and environmental values. Many developing nations are borrowing from international lenders or negotiating access to their natural resources in order to expand their transportation infrastructure. Given the unprecedented pace and extent of these initiatives, it is vital to thoroughly assess the potential consequences of large-scale road and highway projects. In appropriate contexts and locales, new roads can promote sizeable economic and social benefits. If poorly planned or implemented, however, new roads can provoke serious cost overruns, corruption and environmental impacts, while generating sparse economic benefits and intense social and political conflict. Using examples from developing nations, we identify risks that can hinder road projects in wet and dry tropical environments. Such risks, we assert, are often inadequately considered by project proponents, evaluators and the general public, creating a systematic tendency to overestimate project benefits while understating project risks. A more precautionary approach is needed to reduce risks while maximizing benefits of new road projects in the tropics.


Asunto(s)
Conservación de los Recursos Naturales/economía , Transportes/economía , Clima Tropical , Biodiversidad
13.
Curr Biol ; 25(24): 3202-8, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26628009

RESUMEN

In sub-Saharan Africa, dozens of major "development corridors" have been proposed or are being created to increase agricultural production [1-4], mineral exports [5-7], and economic integration. The corridors involve large-scale expansion of infrastructure such as roads, railroads, pipelines, and port facilities and will open up extensive areas of land to new environmental pressures [1, 4, 8]. We assessed the potential environmental impacts of 33 planned or existing corridors that, if completed, would total over 53,000 km in length and crisscross much of the African continent. We mapped each corridor and estimated human occupancy (using the distribution of persistent night-lights) and environmental values (endangered and endemic vertebrates, plant diversity, critical habitats, carbon storage, and climate-regulation services) inside a 50-km-wide band overlaid onto each corridor. We also assessed the potential for each corridor to facilitate increases in agricultural production. The corridors varied considerably in their environmental values, and many were only sparsely populated. Because of marginal soils or climates, some corridors appear to have only modest agricultural potential. Collectively, the corridors would bisect over 400 existing protected areas and could degrade a further ~1,800 by promoting habitat disruption near or inside the reserves. We conclude that many of the development corridors will promote serious and largely irreversible environmental changes and should proceed only if rigorous mitigation and protection measures can be employed. Some planned corridors with high environmental values and limited agricultural benefits should possibly be cancelled altogether. VIDEO ABSTRACT.


Asunto(s)
Agricultura , Conservación de los Recursos Naturales , Países en Desarrollo , Transportes , África del Sur del Sahara , Análisis Costo-Beneficio , Ambiente , Humanos
14.
Sci Rep ; 4: 6112, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25135165

RESUMEN

Trans-boundary haze events in Southeast Asia are associated with large forest and peatland fires in Indonesia. These episodes of extreme air pollution usually occur during drought years induced by climate anomalies from the Pacific (El Niño Southern Oscillation) and Indian Oceans (Indian Ocean Dipole). However, in June 2013--a non-drought year--Singapore's 24-hr Pollutants Standards Index reached an all-time record 246 (rated "very unhealthy"). Here, we show using remote sensing, rainfall records and other data, that the Indonesian fires behind the 2013 haze followed a two-month dry spell in a wetter-than-average year. These fires were short-lived (one week) and limited to a localized area in Central Sumatra (1.6% of Indonesia): burning an estimated 163,336 ha, including 137,044 ha (84%) on peat. Most burning was confined to deforested lands (82%; 133,216 ha). The greenhouse gas (GHG) emissions during this brief, localized event were considerable: 172 ± 59 Tg CO2-eq (or 31 ± 12 Tg C), representing 5-10% of Indonesia's mean annual GHG emissions for 2000-2005. Our observations show that extreme air pollution episodes in Southeast Asia are no longer restricted to drought years. We expect major haze events to be increasingly frequent because of ongoing deforestation of Indonesian peatlands.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Incendios , Carbono/análisis , Indonesia , Lluvia
15.
Nature ; 513(7517): 229-32, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25162528

RESUMEN

The number and extent of roads will expand dramatically this century. Globally, at least 25 million kilometres of new roads are anticipated by 2050; a 60% increase in the total length of roads over that in 2010. Nine-tenths of all road construction is expected to occur in developing nations, including many regions that sustain exceptional biodiversity and vital ecosystem services. Roads penetrating into wilderness or frontier areas are a major proximate driver of habitat loss and fragmentation, wildfires, overhunting and other environmental degradation, often with irreversible impacts on ecosystems. Unfortunately, much road proliferation is chaotic or poorly planned, and the rate of expansion is so great that it often overwhelms the capacity of environmental planners and managers. Here we present a global scheme for prioritizing road building. This large-scale zoning plan seeks to limit the environmental costs of road expansion while maximizing its benefits for human development, by helping to increase agricultural production, which is an urgent priority given that global food demand could double by mid-century. Our analysis identifies areas with high environmental values where future road building should be avoided if possible, areas where strategic road improvements could promote agricultural development with relatively modest environmental costs, and 'conflict areas' where road building could have sizeable benefits for agriculture but with serious environmental damage. Our plan provides a template for proactively zoning and prioritizing roads during the most explosive era of road expansion in human history.


Asunto(s)
Conservación de los Recursos Naturales , Política Ambiental , Animales , Biodiversidad , Geografía , Cooperación Internacional , Modelos Teóricos
16.
PLoS One ; 9(7): e101654, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25029192

RESUMEN

The native forests of Borneo have been impacted by selective logging, fire, and conversion to plantations at unprecedented scales since industrial-scale extractive industries began in the early 1970s. There is no island-wide documentation of forest clearance or logging since the 1970s. This creates an information gap for conservation planning, especially with regard to selectively logged forests that maintain high conservation potential. Analysing LANDSAT images, we estimate that 75.7% (558,060 km2) of Borneo's area (737,188 km2) was forested around 1973. Based upon a forest cover map for 2010 derived using ALOS-PALSAR and visually reviewing LANDSAT images, we estimate that the 1973 forest area had declined by 168,493 km2 (30.2%) in 2010. The highest losses were recorded in Sabah and Kalimantan with 39.5% and 30.7% of their total forest area in 1973 becoming non-forest in 2010, and the lowest in Brunei and Sarawak (8.4%, and 23.1%). We estimate that the combined area planted in industrial oil palm and timber plantations in 2010 was 75,480 km2, representing 10% of Borneo. We mapped 271,819 km of primary logging roads that were created between 1973 and 2010. The greatest density of logging roads was found in Sarawak, at 0.89 km km-2, and the lowest density in Brunei, at 0.18 km km-2. Analyzing MODIS-based tree cover maps, we estimate that logging operated within 700 m of primary logging roads. Using this distance, we estimate that 266,257 km2 of 1973 forest cover has been logged. With 389,566 km2 (52.8%) of the island remaining forested, of which 209,649 km2 remains intact. There is still hope for biodiversity conservation in Borneo. Protecting logged forests from fire and conversion to plantations is an urgent priority for reducing rates of deforestation in Borneo.


Asunto(s)
Conservación de los Recursos Naturales/estadística & datos numéricos , Bosques , Árboles , Madera , Borneo , Análisis Espacio-Temporal , Árboles/fisiología
17.
Conserv Biol ; 28(4): 1023-33, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24628366

RESUMEN

The government of Indonesia, which presides over 10% of the world's tropical forests, has set ambitious targets to cut its high deforestation rates through an REDD+ scheme (Reducing Emissions from Deforestation and forest Degradation). This will require strong law enforcement to succeed. Yet, strategies that have accomplished this are rare and, along with past failures, tend not to be documented. We evaluated a multistakeholder approach that seeks to tackle illegal logging in the carbon-rich province of Aceh, Sumatra. From 2008 to 2009, Fauna & Flora International established and supported a community-based informant network for the 738,000 ha Ulu Masen ecosystem. The network reported 190 forest offenses to local law enforcement agencies, which responded with 86 field operations that confiscated illicit vehicles, equipment, and timber, and arrested 138 illegal logging suspects. From 45 cases subsequently monitored, 64.4% proceeded to court, from which 90.0% of defendants received a prison sentence or a verbal warning for a first offense. Spatial analyses of illegal logging and timber storage incidents predicted that illegal activities would be more effectively deterred by law enforcement operations that targeted the storage sites. Although numerous clusters of incidents were identified, they were still widespread reflecting the ubiquity of illegal activities. The multistakeholder results were promising, but illegal logging still persisted at apparently similar levels at the project's end, indicating that efforts need to be further strengthened. Nevertheless, several actions contributed to the law enforcement achievements: strong political will; strong stakeholder support; and funding that could be promptly accessed. These factors are highlighted as prerequisites for achieving Indonesia's ambitious REDD+ goals.


Asunto(s)
Conservación de los Recursos Naturales/legislación & jurisprudencia , Agricultura Forestal/legislación & jurisprudencia , Árboles , Conservación de los Recursos Naturales/tendencias , Ecosistema , Agricultura Forestal/métodos , Humanos , Indonesia , Modelos Logísticos
18.
PLoS One ; 9(3): e91695, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24638038

RESUMEN

Tropical agriculture is expanding rapidly at the expense of forest, driving a global extinction crisis. How to create agricultural landscapes that minimise the clearance of forest and maximise sustainability is thus a key issue. One possibility is protecting natural forest within or adjacent to crop monocultures to harness important ecosystem services provided by biodiversity spill-over that may facilitate production. Yet this contrasts with the conflicting potential that the retention of forest exports dis-services, such as agricultural pests. We focus on oil palm and obtained yields from 499 plantation parcels spanning a total of ≈23,000 ha of oil palm plantation in Sabah, Malaysian Borneo. We investigate the relationship between the extent and proximity of both contiguous and fragmented dipterocarp forest cover and oil palm yield, controlling for variation in oil palm age and for environmental heterogeneity by incorporating proximity to non-native forestry plantations, other oil palm plantations, and large rivers, elevation and soil type in our models. The extent of forest cover and proximity to dipterocarp forest were not significant predictors of oil palm yield. Similarly, proximity to large rivers and other oil palm plantations, as well as soil type had no significant effect. Instead, lower elevation and closer proximity to forestry plantations had significant positive impacts on oil palm yield. These findings suggest that if dipterocarp forests are exporting ecosystem service benefits or ecosystem dis-services, that the net effect on yield is neutral. There is thus no evidence to support arguments that forest should be retained within or adjacent to oil palm monocultures for the provision of ecosystem services that benefit yield. We urge for more nuanced assessments of the impacts of forest and biodiversity on yields in crop monocultures to better understand their role in sustainable agriculture.


Asunto(s)
Agricultura , Arecaceae , Conservación de los Recursos Naturales , Bosques , Ecosistema , Geografía , Malasia
19.
PLoS One ; 8(8): e69887, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23967062

RESUMEN

Combining protected areas with natural forest timber concessions may sustain larger forest landscapes than is possible via protected areas alone. However, the role of timber concessions in maintaining natural forest remains poorly characterized. An estimated 57% (303,525 km²) of Kalimantan's land area (532,100 km²) was covered by natural forest in 2000. About 14,212 km² (4.7%) had been cleared by 2010. Forests in oil palm concessions had been reduced by 5,600 km² (14.1%), while the figures for timber concessions are 1,336 km² (1.5%), and for protected forests are 1,122 km² (1.2%). These deforestation rates explain little about the relative performance of the different land use categories under equivalent conversion risks due to the confounding effects of location. An estimated 25% of lands allocated for timber harvesting in 2000 had their status changed to industrial plantation concessions in 2010. Based on a sample of 3,391 forest plots (1×1 km; 100 ha), and matching statistical analyses, 2000-2010 deforestation was on average 17.6 ha lower (95% C.I.: -22.3 ha- -12.9 ha) in timber concession plots than in oil palm concession plots. When location effects were accounted for, deforestation rates in timber concessions and protected areas were not significantly different (Mean difference: 0.35 ha; 95% C.I.: -0.002 ha-0.7 ha). Natural forest timber concessions in Kalimantan had similar ability as protected areas to maintain forest cover during 2000-2010, provided the former were not reclassified to industrial plantation concessions. Our study indicates the desirability of the Government of Indonesia designating its natural forest timber concessions as protected areas under the IUCN Protected Area Category VI to protect them from reclassification.


Asunto(s)
Conservación de los Recursos Naturales/estadística & datos numéricos , Árboles , Borneo , Toma de Decisiones , Indonesia
20.
Nature ; 489(7415): 290-4, 2012 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-22832582

RESUMEN

The rapid disruption of tropical forests probably imperils global biodiversity more than any other contemporary phenomenon. With deforestation advancing quickly, protected areas are increasingly becoming final refuges for threatened species and natural ecosystem processes. However, many protected areas in the tropics are themselves vulnerable to human encroachment and other environmental stresses. As pressures mount, it is vital to know whether existing reserves can sustain their biodiversity. A critical constraint in addressing this question has been that data describing a broad array of biodiversity groups have been unavailable for a sufficiently large and representative sample of reserves. Here we present a uniquely comprehensive data set on changes over the past 20 to 30 years in 31 functional groups of species and 21 potential drivers of environmental change, for 60 protected areas stratified across the world's major tropical regions. Our analysis reveals great variation in reserve 'health': about half of all reserves have been effective or performed passably, but the rest are experiencing an erosion of biodiversity that is often alarmingly widespread taxonomically and functionally. Habitat disruption, hunting and forest-product exploitation were the strongest predictors of declining reserve health. Crucially, environmental changes immediately outside reserves seemed nearly as important as those inside in determining their ecological fate, with changes inside reserves strongly mirroring those occurring around them. These findings suggest that tropical protected areas are often intimately linked ecologically to their surrounding habitats, and that a failure to stem broad-scale loss and degradation of such habitats could sharply increase the likelihood of serious biodiversity declines.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/estadística & datos numéricos , Especies en Peligro de Extinción/estadística & datos numéricos , Árboles/fisiología , Clima Tropical , Agricultura/estadística & datos numéricos , Animales , Recolección de Datos , Ecología/estadística & datos numéricos , Contaminación Ambiental/efectos adversos , Contaminación Ambiental/estadística & datos numéricos , Incendios/estadística & datos numéricos , Agricultura Forestal/estadística & datos numéricos , Entrevistas como Asunto , Minería/estadística & datos numéricos , Crecimiento Demográfico , Lluvia , Reproducibilidad de los Resultados , Investigadores , Encuestas y Cuestionarios , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...