Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 11(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36365383

RESUMEN

Cadmium is one of the most toxic heavy metal pollutants, and its accumulation in the soil is harmful to agriculture. Plants have a higher cadmium tolerance than animals, and some species can be used for phytoremediation. Flax (Linum usitatissimum L.) can accumulate high amounts of cadmium, but the molecular mechanism behind its tolerance is unknown. Here, we employed four genotypes representing two fiber cultivars, an oilseed breeding line, and a transgenic line overexpressing the metallothionein domain for improved cadmium tolerance. We analyzed the proteome of suspensions and the proteome and metabolome of seedling roots in response to cadmium. We identified more than 1400 differentially abundant proteins representing putative mechanisms in cadmium tolerance, including metal-binding proteins and transporters, enzymes of flavonoid, jasmonate, polyamine, glutathione metabolism, and HSP70 proteins. Our data indicated the role of the phytohormone cytokinin in the observed responses. The metabolome profiling found that pipecolinic acid could be a part of the cadmium accumulation mechanism, and the observed accumulation of putrescine, coumaric acid, cinnamic acid, and coutaric acid confirmed the role of polyamines and flavonoids in tolerance to cadmium. In conclusion, our data provide new insight into cadmium tolerance and prospective targets for improving cadmium tolerance in other plants.

2.
Front Nutr ; 9: 838963, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35284457

RESUMEN

Peas are prospectively beneficial legumes in the human diet, and especially in a vegan and vegetarian diet, due to their high content of proteins and starch. Their frequent lack of appeal in human nutrition can be caused by their bloating effect and the content of some antinutritional compounds inhibiting the absorption of important nutrients. This study brings a comprehensive comparison of the nutrient content of pea flour after cooking and lactic fermentation before and after digestion in vitro. As a control sample, raw pea flour was used (sample 1). Raw pea flour was cooked for 10 min (sample 2) and 120 min (sample 3) at 100°C or it was fermented by Lactobacillus plantarum (sample 4) and cooked for 10 min at 100°C (sample 5). The samples were analyzed for protein and amino acids content, maltose, glucose, raffinose, total polyphenols, phytic acid, phytase, and mineral composition (P, Mg, Mn, Fe, Cu, Zn) before and after in vitro digestion. The results showed a significant (p < 0.05) increase in the protein digestibility of samples 3, 4 and 5. In the fermented samples were observed a higher concentration of Cys, Met, and Gln when compared to non-fermented samples. The fermentation of pea flour resulted in a significant (p < 0.05) decrease in glucose, maltose, and raffinose content. Cooking of pea flour for 10 and 120 min, but not fermenting, significantly (p < 0.05) decreased the polyphenols content. Cooking and fermentation together did not affect phytic acid concentration and phytase activity. Mg, Mn, Fe, Cu and, Zn concentration in pea flour was significantly (p < 0.05) decreased by cooking. On the other hand, fermentation significantly (p<0.05) improved the bioaccessibility of Mn and Fe. These findings suggest that lactic fermentation of pea flour is a promising culinary preparation that can improve the digestibility of peas.

3.
Plants (Basel) ; 10(8)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34451655

RESUMEN

Phosphorus (P) is an important nutrient in plant nutrition. Its absorption by plants from the soil is influenced by many factors. Therefore, a foliar application of this nutrient could be utilized for the optimal nutrition state of plants. The premise of the study is that foliar application of phosphorus will increase the yield of normal-phytate (npa) cultivars (CDC Bronco a Cutlass) and low-phytate (lpa) lines (1-2347-144, 1-150-81) grown in soils with low phosphorus supply and affect seed quality depending on the ability of the pea to produce phytate. A graded application of phosphorus (H3PO4) in four doses: without P (P0), 27.3 mg P (P1), 54.5 mg P (P2), and 81.8 mg P/pot (P3) realized at the development stages of the 6th true leaf led to a significant increase of chlorophyll contents, and fluorescence parameters of chlorophyll expressing the CO2 assimilation velocity. The P fertilization increased the yield of seeds significantly, except the highest dose of phosphorus (P3) at which the yield of the npa cultivars was reduced. The line 1-2347-144 was the most sensible to the P application when the dose P3 increased the seed production by 42.1%. Only the lpa line 1-150-81 showed a decreased tendency in the phytate content at the stepped application of the P nutrition. Foliar application of phosphorus significantly increased ash material in seed, but did not tend to affect the protein and mineral content of seeds. Only the zinc content in seeds was significantly reduced by foliar application of P in npa and lpa pea genotypes. It is concluded from the present study that foliar phosphorus application could be an effective way to enhance the pea growth in P-deficient condition with a direct effect on seed yield and quality.

4.
Methods Mol Biol ; 2288: 91-102, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34270006

RESUMEN

We describe the production of doubled haploids through anther culture in caraway. Induction conditions for the cultivation of donor plants, anther collection, composition of culture media, and physical induction conditions for embryogenesis have been described. As a result, responsive lines with numerous haploid embryo production were obtained, which after colchicine treatment became fertile. From a practical point of view, two doubled haploid populations are tested under field conditions.


Asunto(s)
Carum/crecimiento & desarrollo , Carum/genética , Fitomejoramiento/métodos , Carum/fisiología , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Medios de Cultivo/química , Diploidia , Esterasas/análisis , Flores/genética , Flores/crecimiento & desarrollo , Haploidia , Homocigoto , Isoenzimas/análisis , Biología Molecular/métodos , Polen/genética , Polen/crecimiento & desarrollo , Técnicas de Cultivo de Tejidos
5.
Molecules ; 23(10)2018 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-30332796

RESUMEN

Muscotoxins are cyanobacterial cyclic lipopeptides with potential applications in biomedicine and biotechnology. In this study, Desmonostoc muscorum CCALA125 strain extracts were enriched by polymeric resin treatment, and subjected to HPCCC affording three cyclic lipopeptides (1⁻3), which were further repurified by semi-preparative HPLC, affording 1, 2, and 3, with a purity of 86%, 92%, and 90%, respectively. The chemical identities of 2⁻3 were determined as muscotoxins A and B, respectively, by comparison with previously reported ESI-HRMS/MS data, whereas 1 was determined as a novel muscotoxin variant (muscotoxin C) using NMR and ESI-HRMS/MS data. Owing to the high yield (50 mg), compound 2 was broadly screened for its antimicrobial potential exhibiting a strong antifungal activity against Alternaria alternata, Monographella cucumerina, and Aspergillus fumigatus, with minimum inhibitory concentration (MIC) values of 0.58, 2.34, and 2.34 µg/mL; respectively, and weak antibacterial activity against Bacillus subtilis with a MIC value of 37.5 µg/mL. Compounds 1 and 3 were tested only against the plant pathogenic fungus Sclerotinia sclerotiorum due to their low yield, displaying a moderate antifungal activity. The developed chromatographic method proved to be an efficient tool for obtaining muscotoxins with potent antifungal properties.


Asunto(s)
Antiinfecciosos/aislamiento & purificación , Toxinas Bacterianas/aislamiento & purificación , Cianobacterias/metabolismo , Resinas Sintéticas/química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Ascomicetos/efectos de los fármacos , Bacillus subtilis/efectos de los fármacos , Toxinas Bacterianas/química , Toxinas Bacterianas/farmacología , Cromatografía Líquida de Alta Presión , Lipopéptidos/química , Lipopéptidos/farmacología , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología
6.
Planta ; 240(5): 1139-46, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25086615

RESUMEN

MAIN CONCLUSION: Vavilovia formosa (Stev.) Fed. is a scientifically valuable common ancestor of the plant tribe Fabeae and also important in breeding and agronomy studies of the cultivated Fabeae, but it is close to extinction. A concerted academic and geovernmental effort is needed to save it. Since 2007, an informal international group of researchers on legumes has been working to increase awareness of Vavilovia formosa (Stev.) Fed., a relict and endangered wild-land relative to crop plant species. A majority of the modern botanical classifications place it within the tribe Fabeae, together with the genera vetchling (Lathyrus L.), lentil (Lens Mill.), pea (Pisum L.) and vetch (Vicia L.). V. formosa is encountered at altitudes from 1,500 m up to 3,500 m in Armenia, Azerbaijan, Georgia, Iran, Iraq, Lebanon, Russia, Syria and Turkey. This species may be of extraordinary importance for broadening current scientific knowledge on legume evolution and taxonomy because of its proximity to the hypothetical common ancestor of the tribe Fabeae, as well as for breeding and agronomy of the cultivated Fabeae species due to its perenniality and stress resistance. All this may be feasible only if a concerted and long-term conservation strategy is established and carried out by both academic and geovernmental authorities. The existing populations of V. formosa are in serious danger of extinction. The main threats are domestic and wild animal grazing, foraging, and early frosts in late summer. A long-term strategy to save V. formosa from extinction and to sustain its use in both basic and applied research comprises much improved in situ preservation, greater efforts for an ex situ conservation, and novel approaches of in vitro propagation.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Especies en Peligro de Extinción , Fabaceae/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Color , Europa (Continente) , Evolución Molecular , Fabaceae/clasificación , Fabaceae/genética , Flores/genética , Geografía , Hibridación Genética , Filogenia , Pigmentación/genética , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...