Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Exp Zool B Mol Dev Evol ; 336(6): 496-510, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34254444

RESUMEN

Ploidy transitions through whole genome duplication have shaped evolution by allowing the sub- and neo-functionalization of redundant copies of highly conserved genes to express novel traits. The nuclear:cytoplasmic (n:c) ratio is maintained in polyploid vertebrates resulting in larger cells, but body size is maintained by a concomitant reduction in cell number. Ploidy can be manipulated easily in most teleosts, and the zebrafish, already well established as a model system for biomedical research, is therefore an excellent system in which to study the effects of increased cell size and reduced cell numbers in polyploids on development and physiology. Here we describe a novel technique using confocal microscopy to measure genome size and determine ploidy non-lethally at 48 h post-fertilization (hpf) in transgenic zebrafish expressing fluorescent histones. Volumetric analysis of myofiber nuclei using open-source software can reliably distinguish diploids and triploids from a mixed-ploidy pool of embryos for subsequent experimentation. We present an example of this by comparing heart rate between confirmed diploid and triploid embryos at 54 hpf.


Asunto(s)
Ploidias , Pez Cebra/embriología , Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Tamaño de la Célula , Tamaño del Genoma , Microscopía Confocal , Músculos/citología
2.
J Dev Biol ; 8(1)2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-32023839

RESUMEN

Hypoxia induces precocious hatching in zebrafish, but we do not have a clear understanding of the molecular mechanisms regulating the activation of the hatching enzyme or how these mechanisms trigger precocious hatching under unfavorable environmental conditions. Using immunohistochemistry, pharmacological inhibition of matrix metalloproteinase 13 (Mmp13), and in vivo zymography, we show that Mmp13a is present in the hatching gland just as embryos become hatching competent and that Mmp13a activity is required for both normal hatching and hypoxia-induced precocious hatching. We conclude that Mmp13a likely functions in activating the hatching enzyme zymogen and that Mmp13a activity is necessary but not sufficient for hatching in zebrafish. This study highlights the broad nature of MMP function in development and provides a non-mammalian example of extra-embryonic processes mediated by MMP activity.

3.
Neural Regen Res ; 11(3): 357-62, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27127457

RESUMEN

The matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases originally characterized as secreted proteases responsible for degrading extracellular matrix proteins. Their canonical role in matrix remodelling is of significant importance in neural development and regeneration, but emerging roles for MMPs, especially in signal transduction pathways, are also of obvious importance in a neural context. Misregulation of MMP activity is a hallmark of many neuropathologies, and members of every branch of the MMP family have been implicated in aspects of neural development and disease. However, while extraordinary research efforts have been made to elucidate the molecular mechanisms involving MMPs, methodological constraints and complexities of the research models have impeded progress. Here we discuss the current state of our understanding of the roles of MMPs in neural development using recent examples and advocate a phylogenetically diverse approach to MMP research as a means to both circumvent the challenges associated with specific model organisms, and to provide a broader evolutionary context from which to synthesize an understanding of the underlying biology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...