Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 12(12)2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36551159

RESUMEN

Secretory leucoprotease inhibitor (SLPI) has multifaceted functions, including inhibition of protease activity, antimicrobial functions, and anti-inflammatory properties. In this study, we show that SLPI plays a role in controlling pulmonary Pseudomonas aeruginosa infection. Mice lacking SLPI were highly susceptible to P. aeruginosa infection, however there was no difference in bacterial burden. Utilising a model of P. aeruginosa LPS-induced lung inflammation, human recombinant SLPI (hrSLPI) administered intraperitoneally suppressed the recruitment of inflammatory cells in the bronchoalveolar lavage fluid (BALF) and resulted in reduced BALF and serum levels of inflammatory cytokines and chemokines. This anti-inflammatory effect of hrSLPI was similarly demonstrated in a systemic inflammation model induced by intraperitoneal injection of LPS from various bacteria or lipoteichoic acid, highlighting the broad anti-inflammatory properties of hrSLPI. Moreover, in bone-marrow-derived macrophages, hrSLPI reduced LPS-induced phosphorylation of p-IkB-α, p-IKK-α/ß, p-P38, demonstrating that the anti-inflammatory effect of hrSLPI was due to the inhibition of the NFκB and MAPK pathways. In conclusion, administration of hrSLPI attenuates excessive inflammatory responses and is therefore, a promising strategy to target inflammatory diseases such as acute respiratory distress syndrome or sepsis and could potentially be used to augment antibiotic treatment.


Asunto(s)
Inflamación , Infecciones por Pseudomonas , Inhibidor Secretorio de Peptidasas Leucocitarias , Animales , Humanos , Ratones , Inflamación/metabolismo , Inflamación/microbiología , Lipopolisacáridos , Infecciones por Pseudomonas/metabolismo , Infecciones por Pseudomonas/terapia , Inhibidor Secretorio de Peptidasas Leucocitarias/administración & dosificación , Inhibidor Secretorio de Peptidasas Leucocitarias/metabolismo , Proteínas Recombinantes/administración & dosificación
2.
Gut ; 71(12): 2502-2517, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35477539

RESUMEN

OBJECTIVE: Stroma-rich tumours represent a poor prognostic subtype in stage II/III colon cancer (CC), with high relapse rates and limited response to standard adjuvant chemotherapy. DESIGN: To address the lack of efficacious therapeutic options for patients with stroma-rich CC, we stratified our human tumour cohorts according to stromal content, enabling identification of the biology underpinning relapse and potential therapeutic vulnerabilities specifically within stroma-rich tumours that could be exploited clinically. Following human tumour-based discovery and independent clinical validation, we use a series of in vitro and stroma-rich in vivo models to test and validate the therapeutic potential of elevating the biology associated with reduced relapse in human tumours. RESULTS: By performing our analyses specifically within the stroma-rich/high-fibroblast (HiFi) subtype of CC, we identify and validate the clinical value of a HiFi-specific prognostic signature (HPS), which stratifies tumours based on STAT1-related signalling (High-HPS v Low-HPS=HR 0.093, CI 0.019 to 0.466). Using in silico, in vitro and in vivo models, we demonstrate that the HPS is associated with antigen processing and presentation within discrete immune lineages in stroma-rich CC, downstream of double-stranded RNA and viral response signalling. Treatment with the TLR3 agonist poly(I:C) elevated the HPS signalling and antigen processing phenotype across in vitro and in vivo models. In an in vivo model of stroma-rich CC, poly(I:C) treatment significantly increased systemic cytotoxic T cell activity (p<0.05) and reduced liver metastases (p<0.0002). CONCLUSION: This study reveals new biological insight that offers a novel therapeutic option to reduce relapse rates in patients with the worst prognosis CC.


Asunto(s)
Biomarcadores de Tumor , Neoplasias del Colon , Humanos , Biomarcadores de Tumor/genética , Células del Estroma/patología , Recurrencia Local de Neoplasia/prevención & control , Recurrencia Local de Neoplasia/patología , Neoplasias del Colon/patología , Pronóstico
3.
Am J Respir Crit Care Med ; 205(7): 769-782, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35073247

RESUMEN

Rationale: Although the cysteine protease cathepsin S has been implicated in the pathogenesis of several inflammatory lung diseases, its role has not been examined in the context of acute respiratory distress syndrome, a condition that still lacks specific and effective pharmacological treatments. Objectives: To characterize the status of cathepsin S in acute lung inflammation and examine the role of cathepsin S in disease pathogenesis. Methods: Human and mouse model BAL fluid samples were analyzed for the presence and activity of cathepsin S and its endogenous inhibitors. Recombinant cathepsin S was instilled directly into the lungs of mice. The effects of cathepsin S knockout and pharmacological inhibition were examined in two models of acute lung injury. Protease-activated receptor-1 antagonism was used to test a possible mechanism for cathepsin S-mediated inflammation. Measurements and Main Results: Pulmonary cathepsin S concentrations and activity were elevated in acute respiratory distress syndrome, a phenotype possibly exacerbated by the loss of the endogenous antiprotease cystatin SN. Direct cathepsin S instillation into the lungs induced key pathologies of acute respiratory distress syndrome, including neutrophilia and alveolar leakage. Conversely, in murine models of acute lung injury, genetic knockdown and prophylactic or therapeutic inhibition of cathepsin S reduced neutrophil recruitment and protein leakage. Cathepsin S may partly mediate its pathogenic effects via protease-activated receptor-1, because antagonism of this receptor abrogated cathepsin S-induced airway inflammation. Conclusions: Cathepsin S contributes to acute lung injury and may represent a novel therapeutic target for acute respiratory distress syndrome.


Asunto(s)
Neumonía , Síndrome de Dificultad Respiratoria , Animales , Líquido del Lavado Bronquioalveolar , Catepsinas , Modelos Animales de Enfermedad , Humanos , Pulmón/patología , Ratones
4.
Mediators Inflamm ; 2021: 6682657, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33828414

RESUMEN

BACKGROUND: Elevated levels of the cysteine protease cathepsin S (CatS) are associated with chronic mucoobstructive lung diseases such as cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). We have previously demonstrated that prophylactic treatment with a CatS inhibitor from birth reduces inflammation, mucus plugging, and lung tissue damage in juvenile ß-epithelial Na+ channel-overexpressing transgenic (ßENaC-Tg) mice with chronic inflammatory mucoobstructive lung disease. In this study, we build upon this work to examine the effects of therapeutic intervention with a CatS inhibitor in adult ßENaC-Tg mice with established disease. METHODS: ßENaC-Tg mice and wild-type (WT) littermates were treated with a CatS inhibitor from 4 to 6 weeks of age, and CatS-/- ßENaC-Tg mice were analysed at 6 weeks of age. Bronchoalveolar lavage (BAL) fluid inflammatory cell counts were quantified, and lung tissue destruction and mucus obstruction were analysed histologically. RESULTS: At 6 weeks of age, ßENaC-Tg mice developed significant airway inflammation, lung tissue damage, and mucus plugging when compared to WT mice. CatS-/- ßENaC-Tg mice and ßENaC-Tg mice receiving inhibitor had significantly reduced airway mononuclear and polymorphonuclear (PMN) cell counts as well as mucus plugging. However, in contrast to CatS-/- ßENaC-Tg mice, therapeutic inhibition of CatS in ßENaC-Tg mice had no effect on established emphysema-like lung tissue damage. CONCLUSIONS: These results suggest that while early CatS targeting may be required to prevent the onset and progression of lung tissue damage, therapeutic CatS targeting effectively inhibited airway inflammation and mucus obstruction. These results indicate the important role CatS may play in the pathogenesis and progression of mucoobstructive lung disease.


Asunto(s)
Catepsinas/antagonistas & inhibidores , Fibrosis Quística , Canales Epiteliales de Sodio , Animales , Fibrosis Quística/patología , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Inflamación/patología , Pulmón/patología , Ratones , Ratones Transgénicos , Moco
5.
Eur Respir J ; 53(3)2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30655278

RESUMEN

Cathepsin S (CatS) is upregulated in the lungs of patients with cystic fibrosis (CF). However, its role in CF lung disease pathogenesis remains unclear.In this study, ß-epithelial Na+ channel-overexpressing transgenic (ßENaC-Tg) mice, a model of CF-like lung disease, were crossed with CatS null (CatS-/-) mice or treated with the CatS inhibitor VBY-999.Levels of active CatS were elevated in the lungs of ßENaC-Tg mice compared with wild-type (WT) littermates. CatS-/-ßENaC-Tg mice exhibited decreased pulmonary inflammation, mucus obstruction and structural lung damage compared with ßENaC-Tg mice. Pharmacological inhibition of CatS resulted in a significant decrease in pulmonary inflammation, lung damage and mucus plugging in the lungs of ßENaC-Tg mice. In addition, instillation of CatS into the lungs of WT mice resulted in inflammation, lung remodelling and upregulation of mucin expression. Inhibition of the CatS target, protease-activated receptor 2 (PAR2), in ßENaC-Tg mice resulted in a reduction in airway inflammation and mucin expression, indicating a role for this receptor in CatS-induced lung pathology.Our data indicate an important role for CatS in the pathogenesis of CF-like lung disease mediated in part by PAR2 and highlight CatS as a therapeutic target.


Asunto(s)
Catepsinas/metabolismo , Fibrosis Quística/metabolismo , Moco/metabolismo , Neumonía/metabolismo , Receptor PAR-2/metabolismo , Obstrucción de las Vías Aéreas/metabolismo , Animales , Catepsinas/genética , Modelos Animales de Enfermedad , Canales Epiteliales de Sodio/genética , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neumonía/etiología
6.
Int J Radiat Oncol Biol Phys ; 103(5): 1231-1240, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30552964

RESUMEN

PURPOSE: The aim of this study was to define the dose and dose-volume relationship of radiation-induced pulmonary toxicities occurring in and out-of-field in mouse models of early inflammatory and late fibrotic response. MATERIALS AND METHODS: Early radiation-induced inflammation and fibrosis were investigated in C3H/NeJ and C57BL/6J mice, respectively. Animals were irradiated with 20 Gy delivered to the upper region of the right lung as a single fraction or as 3 consecutive fractions using the Small Animal Radiation Research Platform (Xstrahl Inc, Camberley, UK). Cone beam computed tomography was performed for image guidance before irradiation and to monitor late toxicity. Histologic sections were examined for neutrophil and macrophage infiltration as markers of early inflammatory response and type I collagen staining as a marker of late-occurring fibrosis. Correlation was evaluated with the dose-volume histogram parameters calculated for individual mice and changes in the observed cone beam computed tomography values. RESULTS: Mean lung dose and the volume receiving over 10 Gy (V10) showed significant correlation with late responses for single and fractionated exposures in directly targeted volumes. Responses observed outside the target volume were attributed to nontargeted effects and showed no dependence on either mean lung dose or V10. CONCLUSIONS: Quantitative assessment of normal tissue response closely correlates early and late pulmonary response with clinical parameters, demonstrating this approach as a potential tool to facilitate clinical translation of preclinical studies. Out-of-field effects were observed but did not correlate with dosimetric parameters, suggesting that nontargeted effects may have a role in driving toxicities outside the treatment field.


Asunto(s)
Pulmón/efectos de la radiación , Neumonitis por Radiación/patología , Radioterapia Guiada por Imagen , Animales , Recuento de Células , Colágeno Tipo I/análisis , Tomografía Computarizada de Haz Cónico , Modelos Animales de Enfermedad , Relación Dosis-Respuesta en la Radiación , Pulmón/diagnóstico por imagen , Pulmón/patología , Macrófagos , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Neutrófilos , Traumatismos por Radiación/diagnóstico por imagen , Traumatismos por Radiación/etiología , Traumatismos por Radiación/patología , Neumonitis por Radiación/diagnóstico por imagen , Dosificación Radioterapéutica
7.
J Control Release ; 279: 316-325, 2018 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-29704616

RESUMEN

Klebsiella pneumoniae is a foremost gram-negative pathogen that can induce life-threatening nosocomial pulmonary infections. Although it can be phagocytosed successfully by lung resident macrophages, this pathogen remains viable within vacuolar compartments, resulting in chronic infection and limiting therapeutic treatment with antibiotics. In this study, we aimed to generate and evaluate a cell-penetrant antibiotic poly(lactide-co-glycolide) (PLGA)-based formulation that could successfully treat intracellular K. pneumoniae infection. Screening of formulation conditions allowed the generation of high drug loaded nanoparticles through a water-in-oil-in-water approach. We demonstrated the therapeutic usefulness of these gentamicin-loaded nanoparticles (GNPs), showing their ability to improve survival and provide extended prophylactic protection towards K. pneumoniae using a Galleria mellonella infection model. We subsequently showed that the GNPs could be phagocytosed by K. pneumoniae infected macrophages, and significantly reduce the viability of the intracellular bacteria without further stimulation of pro-inflammatory or pro-apoptotic effects on the macrophages. Taken together, these results clearly show the potential to use antibiotic loaded NPs to treat intracellular K. pneumoniae infection, reducing bacterial viability without concomitant stimulation of inflammatory or pyroptotic pathways in the treated cells.


Asunto(s)
Antibacterianos/administración & dosificación , Gentamicinas/administración & dosificación , Infecciones por Klebsiella/tratamiento farmacológico , Nanopartículas , Animales , Antibacterianos/farmacología , Modelos Animales de Enfermedad , Portadores de Fármacos/química , Gentamicinas/farmacología , Klebsiella pneumoniae/efectos de los fármacos , Macrófagos/metabolismo , Mariposas Nocturnas/microbiología , Fagocitosis/fisiología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química
8.
Radiother Oncol ; 124(3): 475-481, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28697853

RESUMEN

BACKGROUND AND PURPOSE: To evaluate the impact of ATR inhibition using AZD6738 in combination with radiotherapy on the response of non-small cell lung cancer (NSCLC) tumour models and a murine model of radiation induced fibrosis. MATERIALS AND METHODS: AZD6738 was evaluated as a monotherapy and in combination with radiation in vitro and in vivo using A549 and H460 NSCLC models. Radiation induced pulmonary fibrosis was evaluated by cone beam computed tomography (CBCT) and histological staining. RESULTS: AZD6738 specifically inhibits ATR kinase and enhanced radiobiological response in NSCLC models but not in human bronchial epithelial cells (HBECs) in vitro. Significant tumour growth delay was observed in cell line derived xenografts (CDXs) of H460 cells (p<0.05) which were less significant in A549 cells. Combination of AZD6738 with radiotherapy showed no significant change in lung tissue density by CBCT (p>0.5) and histological scoring of radiation induced fibrosis (p>0.5). CONCLUSION: Inhibition of ATR with AZD6738 in combination with radiotherapy increases tumour growth delay without observable augmentation of late radiation induced toxicity further underpinning translation towards clinical evaluation in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Neoplasias Pulmonares/radioterapia , Pirimidinas/farmacología , Sulfóxidos/farmacología , Índice Terapéutico , Animales , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Línea Celular Tumoral , Tomografía Computarizada de Haz Cónico , Femenino , Humanos , Indoles , Ratones , Ratones Endogámicos C57BL , Morfolinas , Sulfonamidas , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Biol Chem ; 398(4): 425-440, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-27930359

RESUMEN

Members of the whey acidic protein (WAP) or WAP four-disulfide-core (WFDC) family of proteins are a relatively under-explored family of low molecular weight proteins. The two most prominent WFDC proteins, secretory leukocyte protease inhibitor (SLPI) and elafin (or the precursor, trappin-2), have been shown to possess multiple functions including anti-protease, anti-bacterial, anti-viral and anti-inflammatory properties. It is therefore of no surprise that both SLPI and elafin/trappin-2 have been developed as potential therapeutics. Given the abundance of SLPI and elafin/trappin-2 in the human lung, most work in the area of WFDC research has focused on the role of WFDC proteins in protecting the lung from proteolytic attack. In this review, we will outline the current evidence regarding the expanding role of WFDC protein function with a focus on WFDC activity in lung disease as well as emerging data regarding the function of some of the more recently described WFDC proteins.


Asunto(s)
Enfermedades Pulmonares/fisiopatología , Proteínas de la Leche/metabolismo , Fenómenos Fisiológicos Respiratorios , Humanos , Enfermedades Pulmonares/prevención & control , Proteínas de la Leche/clasificación , Proteínas/metabolismo , Proteína 2 de Dominio del Núcleo de Cuatro Disulfuros WAP
10.
Am J Respir Crit Care Med ; 193(4): 407-16, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26488187

RESUMEN

RATIONALE: IL-17A is purported to help drive early pathogenesis in acute respiratory distress syndrome (ARDS) by enhancing neutrophil recruitment. Although IL-17A is the archetypal cytokine of T-helper 17 cells, it is produced by a number of lymphocytes, the source during ARDS being unknown. OBJECTIVES: To identify the cellular source and the role of IL-17A in the early phase of lung injury. METHODS: Lung injury was induced in wild-type (C57BL/6) and IL-17 knockout (KO) mice with aerosolized LPS (100 µg) or Pseudomonas aeruginosa infection. Detailed phenotyping of the cells expressing RORγt, the transcriptional regulator of IL-17 production, in the mouse lung at 24 hours was performed by flow cytometry. MEASUREMENTS AND MAIN RESULTS: A 100-fold reduction in neutrophil infiltration was observed in the lungs of the IL-17A KO compared with wild-type mice. The majority of RORγt(+) cells in the mouse lung were the recently identified group 3 innate lymphoid cells (ILC3s). Detailed characterization revealed these pulmonary ILC3s (pILC3s) to be discrete from those described in the gut. The critical role of these cells was verified by inducing injury in recombinase-activating gene 2 KO mice, which lack T cells but retain innate lymphoid cells. No amelioration of pathology was observed in the recombinase-activating gene 2 KO mice. CONCLUSIONS: IL-17 is rapidly produced during lung injury and significantly contributes to early immunopathogenesis. This is orchestrated largely by a distinct population of pILC3s. Modulation of the activity of pILC3s may potentiate early control of the inflammatory dysregulation seen in ARDS, opening up new therapeutic targets.


Asunto(s)
Interleucina-17/biosíntesis , Linfocitos/patología , Síndrome de Dificultad Respiratoria/patología , Animales , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Pulmón/patología , Linfocitos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infiltración Neutrófila , Síndrome de Dificultad Respiratoria/metabolismo
11.
Sci Transl Med ; 7(303): 303ra140, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26333936

RESUMEN

Sepsis is the most frequent cause of death in hospitalized patients, and severe sepsis is a leading contributory factor to acute respiratory distress syndrome (ARDS). At present, there is no effective treatment for these conditions, and care is primarily supportive. Murine sialic acid-binding immunoglobulin-like lectin-E (Siglec-E) and its human orthologs Siglec-7 and Siglec-9 are immunomodulatory receptors found predominantly on hematopoietic cells. These receptors are important negative regulators of acute inflammatory responses and are potential targets for the treatment of sepsis and ARDS. We describe a Siglec-targeting platform consisting of poly(lactic-co-glycolic acid) nanoparticles decorated with a natural Siglec ligand, di(α2→8) N-acetylneuraminic acid (α2,8 NANA-NP). This nanoparticle induced enhanced oligomerization of the murine Siglec-E receptor on the surface of macrophages, unlike the free α2,8 NANA ligand. Furthermore, treatment of murine macrophages with these nanoparticles blocked the production of lipopolysaccharide-induced inflammatory cytokines in a Siglec-E-dependent manner. The nanoparticles were also therapeutically beneficial in vivo in both systemic and pulmonary murine models replicating inflammatory features of sepsis and ARDS. Moreover, we confirmed the anti-inflammatory effect of these nanoparticles on human monocytes and macrophages in vitro and in a human ex vivo lung perfusion (EVLP) model of lung injury. We also established that interleukin-10 (IL-10) induced Siglec-E expression and α2,8 NANA-NP further augmented the expression of IL-10. Indeed, the effectiveness of the nanoparticle depended on IL-10. Collectively, these results demonstrated a therapeutic effect of targeting Siglec receptors with a nanoparticle-based platform under inflammatory conditions.


Asunto(s)
Inflamación/prevención & control , Ácido N-Acetilneuramínico/química , Nanopartículas , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/efectos de los fármacos , Animales , Humanos , Interleucina-10/fisiología , Ratones , Ratones Endogámicos C57BL , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Regulación hacia Arriba
12.
Oncotarget ; 6(30): 29725-39, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26358505

RESUMEN

Cathepsins S (CatS) has been implicated in numerous tumourigenic processes and here we document for the first time its involvement in CCL2 regulation within the tumour microenvironment. Analysis of syngeneic tumours highlighted reduced infiltrating macrophages in CatS depleted tumours. Interrogation of tumours and serum revealed genetic ablation of CatS leads to the depletion of several pro-inflammatory chemokines, most notably, CCL2. This observation was validated in vitro, where shRNA depletion of CatS resulted in reduced CCL2 expression. This regulation is transcriptionally mediated, as evident from RT-PCR analysis and CCL2 promoter studies. We revealed that CatS regulation of CCL2 is modulated through CD74 (also known as the invariant chain), a known substrate of CatS and a mediator of NFkB activity. Furthermore, CatS and CCL2 show a strong clinical correlation in brain, breast and colon tumours. In summary, these results highlight a novel mechanism by which CatS controls CCL2, which may present a useful pharmacodynamic marker for CatS inhibition.


Asunto(s)
Antígenos de Diferenciación de Linfocitos B/genética , Catepsinas/genética , Quimiocina CCL2/genética , Antígenos de Histocompatibilidad Clase II/genética , Activación Transcripcional , Animales , Antígenos de Diferenciación de Linfocitos B/metabolismo , Western Blotting , Catepsinas/metabolismo , Línea Celular , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Quimiocina CCL2/metabolismo , Células HEK293 , Antígenos de Histocompatibilidad Clase II/metabolismo , Humanos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células 3T3 NIH , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
Thorax ; 70(5): 426-32, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25770093

RESUMEN

INTRODUCTION: Secretory leucocyte protease inhibitor and elafin are members of the whey acidic protein (WAP), or WAP four disulfide-core (WFDC), family of proteins and have multiple contributions to innate defence including inhibition of neutrophil serine proteases and inhibition of the inflammatory response to lipopolysaccharide (LPS). This study aimed to explore potential activities of WFDC12, a previously uncharacterised WFDC protein expressed in the lung. METHODS: Recombinant expression and purification of WFDC12 were optimised in Escherichia coli. Antiprotease, antibacterial and immunomodulatory activities of recombinant WFDC12 were evaluated and levels of endogenous WFDC12 protein were characterised by immunostaining and ELISA. RESULTS: Recombinant WFDC12 inhibited cathepsin G, but not elastase or proteinase-3 activity. Monocytic cells pretreated with recombinant WFDC12 before LPS stimulation produced significantly lower levels of the pro-inflammatory cytokines interleukin-8 and monocyte chemotactic protein-1 compared with cells stimulated with LPS alone. Recombinant WFDC12 became conjugated to fibronectin in a transglutaminase-mediated reaction and retained antiprotease activity. In vivo WFDC12 expression was confirmed by immunostaining of human lung tissue sections. WFDC12 levels in human bronchoalveolar lavage fluid from healthy and lung-injured patients were quantitatively compared, showing WFDC12 to be elevated in both patients with acute respiratory distress syndrome and healthy subjects treated with LPS, relative to healthy controls. CONCLUSIONS: Together, these results suggest a role for this lesser known WFDC protein in the regulation of lung inflammation.


Asunto(s)
Pulmón/metabolismo , Monocitos/efectos de los fármacos , Proteínas/farmacología , Serina Endopeptidasas/efectos de los fármacos , Líquido del Lavado Bronquioalveolar/química , Humanos , Lipopolisacáridos , Pulmón/patología , Pruebas de Sensibilidad Microbiana , Monocitos/metabolismo , Proteínas/metabolismo , Proteínas Recombinantes/farmacología , Técnicas de Cultivo de Tejidos
14.
Mol Ther ; 23(1): 24-31, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25189740

RESUMEN

Elafin is a serine protease inhibitor produced by epithelial and immune cells with anti-inflammatory properties. Research has shown that dysregulated protease activity may elicit proteolytic cleavage of elafin, thereby impairing the innate immune function of the protein. The aim of this study was to generate variants of elafin (GG- and QQ-elafin) that exhibit increased protease resistance while retaining the biological properties of wild-type (WT) elafin. Similar to WT-elafin, GG- and QQ-elafin variants retained antiprotease activity and susceptibility to transglutaminase-mediated fibronectin cross-linking. However, in contrast to WT-elafin, GG- and QQ-elafin displayed significantly enhanced resistance to degradation when incubated with bronchoalveolar lavage fluid from patients with cystic fibrosis. Intriguingly, both variants, particularly GG-elafin, demonstrated improved lipopolysaccharide (LPS) neutralization properties in vitro. In addition, GG-elafin showed improved anti-inflammatory activity in a mouse model of LPS-induced acute lung inflammation. Inflammatory cell infiltration into the lung was reduced in lungs of mice treated with GG-elafin, predominantly neutrophilic infiltration. A reduction in MCP-1 levels in GG-elafin treated mice compared to the LPS alone treatment group was also demonstrated. GG-elafin showed increased functionality when compared to WT-elafin and may be of future therapeutic relevance in the treatment of lung diseases characterized by a protease burden.


Asunto(s)
Antiinflamatorios/farmacología , Elafina/farmacología , Pulmón/efectos de los fármacos , Neumonía/tratamiento farmacológico , Inhibidores de Proteasas/farmacología , Secuencia de Aminoácidos , Animales , Antiinflamatorios/química , Líquido del Lavado Bronquioalveolar/química , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Elafina/química , Elafina/genética , Fibronectinas/antagonistas & inhibidores , Fibronectinas/metabolismo , Expresión Génica , Humanos , Cinética , Lipopolisacáridos , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Datos de Secuencia Molecular , Neumonía/inducido químicamente , Neumonía/metabolismo , Neumonía/patología , Inhibidores de Proteasas/química , Ingeniería de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/farmacología , Proteolisis/efectos de los fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Transglutaminasas/antagonistas & inhibidores , Transglutaminasas/metabolismo
15.
Mol Ther ; 22(12): 2083-2092, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25200008

RESUMEN

Death Receptor 5 (DR5) is a pro-apoptotic cell-surface receptor that is a potential therapeutic target in cancer. Despite the potency of DR5-targeting agents in preclinical models, the translation of these effects into the clinic remains disappointing. Herein, we report an alternative approach to exploiting DR5 tumor expression using antibody-targeted, chemotherapy-loaded nanoparticles. We describe the development of an optimized polymer-based nanotherapeutic incorporating both a functionalized polyethylene glycol (PEG) layer and targeting antibodies to limit premature phagocytic clearance whilst enabling targeting of DR5-expressing tumor cells. Using the HCT116 colorectal cancer model, we show that following binding to DR5, the nanoparticles activate caspase 8, enhancing the anti-tumor activity of the camptothecin payload both in vitro and in vivo. Importantly, the combination of nanoparticle-induced DR5 clustering with camptothecin delivery overcomes resistance to DR5-induced apoptosis caused by loss of BAX or overexpression of anti-apoptotic FLIP. This novel approach may improve the clinical activity of DR5-targeted therapeutics while increasing tumor-specific delivery of systemically toxic chemotherapeutics.


Asunto(s)
Poliposis Adenomatosa del Colon/terapia , Anticuerpos Monoclonales/administración & dosificación , Antineoplásicos Fitogénicos/administración & dosificación , Camptotecina/administración & dosificación , Nanopartículas/administración & dosificación , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Poliposis Adenomatosa del Colon/genética , Poliposis Adenomatosa del Colon/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Antineoplásicos Fitogénicos/farmacología , Apoptosis , Camptotecina/farmacología , Línea Celular Tumoral , Femenino , Células HCT116 , Células HT29 , Humanos , Ratones , Ratones Desnudos , Terapia Molecular Dirigida , Nanomedicina , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Int J Cancer ; 133(9): 2102-12, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23629809

RESUMEN

Recent murine studies have demonstrated that tumor-associated macrophages in the tumor microenvironment are a key source of the pro-tumorigenic cysteine protease, cathepsin S. We now show in a syngeneic colorectal carcinoma murine model that both tumor and tumor-associated cells contribute cathepsin S to promote neovascularization and tumor growth. Cathepsin S depleted and control colorectal MC38 tumor cell lines were propagated in both wild type C57Bl/6 and cathepsin S null mice to provide stratified depletion of the protease from either the tumor, tumor-associated host cells, or both. Parallel analysis of these conditions showed that deletion of cathepsin S inhibited tumor growth and development, and revealed a clear contribution of both tumor and tumor-associated cell derived cathepsin S. The most significant impact on tumor development was obtained when the protease was depleted from both sources. Further characterization revealed that the loss of cathepsin S led to impaired tumor vascularization, which was complemented by a reduction in proliferation and increased apoptosis, consistent with reduced tumor growth. Analysis of cell types showed that in addition to the tumor cells, tumor-associated macrophages and endothelial cells can produce cathepsin S within the microenvironment. Taken together, these findings clearly highlight a manner by which tumor-associated cells can positively contribute to developing tumors and highlight cathepsin S as a therapeutic target in cancer.


Asunto(s)
Carcinoma Pulmonar de Lewis/patología , Catepsinas/fisiología , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales/patología , Melanoma Experimental/patología , Neovascularización Patológica , Animales , Apoptosis , Western Blotting , Carcinoma Pulmonar de Lewis/irrigación sanguínea , Carcinoma Pulmonar de Lewis/genética , Adhesión Celular , Ciclo Celular , Células Cultivadas , Neoplasias Colorrectales/irrigación sanguínea , Neoplasias Colorrectales/genética , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Técnicas para Inmunoenzimas , Macrófagos/citología , Macrófagos/metabolismo , Melanoma Experimental/irrigación sanguínea , Melanoma Experimental/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Microambiente Tumoral
17.
Biomaterials ; 32(33): 8645-53, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21875750

RESUMEN

Colloidal nanoparticle drug delivery systems have attracted much interest for their ability to enable effective formulation and delivery of therapeutic agents. The selective delivery of these nanoparticles to the disease site can be enhanced by coating the surface of the nanoparticles with targeting moieties, such as antibodies. In this current work, we demonstrate that antibodies on the surface of the particles can also elicit key biological effects. Specifically, we demonstrate the induction of apoptosis in colorectal HCT116 cancer cells using PLGA nanoparticles coated with Conatumumab (AMG 655) death receptor 5-specific antibodies (DR5-NP). We show that DR5-NP preferentially target DR5-expressing cells and present a sufficient density of antibody paratopes to induce apoptosis via DR5, unlike free AMG 655 or non-targeted control nanoparticles. We also demonstrate that DR5-targeted nanoparticles encapsulating the cytotoxic drug camptothecin are effectively targeted to the tumour cells, thereby producing enhanced cytotoxic effects through simultaneous drug delivery and apoptosis induction. These results demonstrate that antibodies on nanoparticulate surfaces can be exploited for dual modes of action to enhance the therapeutic utility of the modality.


Asunto(s)
Anticuerpos Monoclonales/química , Apoptosis/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Nanopartículas , Anticuerpos Monoclonales/farmacología , Línea Celular Tumoral , Humanos , Microscopía Electrónica de Rastreo , Microscopía Fluorescente
18.
Clin Cancer Res ; 15(19): 6042-51, 2009 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-19789302

RESUMEN

PURPOSE: Cathepsin S is a cysteine protease that promotes the invasion of tumor and endothelial cells during cancer progression. Here we investigated the potential to target cathepsin S using an antagonistic antibody, Fsn0503, to block these tumorigenic effects. EXPERIMENTAL DESIGN: A panel of monoclonal antibodies was raised to human cathepsin S. The effects of a selected antibody were subsequently determined using invasion and proteolysis assays. Endothelial cell tube formation and aorta sprouting assays were done to examine antiangiogenic effects. In vivo effects were also evaluated using HCT116 xenograft studies. RESULTS: A selected cathepsin S antibody, Fsn0503, significantly blocked invasion of a range of tumor cell lines, most significantly HCT116 colorectal carcinoma cells, through inhibition of extracellular cathepsin S-mediated proteolysis. We subsequently found enhanced expression of cathepsin S in colorectal adenocarcinoma biopsies when compared with normal colon tissue. Moreover, Fsn0503 blocked endothelial cell capillary tube formation and aortic microvascular sprouting. We further showed that administration of Fsn0503 resulted in inhibition of tumor growth and neovascularization of HCT116 xenograft tumors. CONCLUSIONS: These results show that blocking the invasive and proangiogenic effects of cathepsin S with antibody inhibitors may have therapeutic utility upon further preclinical and clinical evaluation.


Asunto(s)
Adenocarcinoma/patología , Anticuerpos Monoclonales/farmacología , Catepsinas/antagonistas & inhibidores , Neoplasias Colorrectales/patología , Neovascularización Patológica/prevención & control , Adenocarcinoma/irrigación sanguínea , Adenocarcinoma/terapia , Animales , Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Catepsinas/inmunología , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Neoplasias Colorrectales/irrigación sanguínea , Neoplasias Colorrectales/terapia , Femenino , Células HCT116 , Humanos , Inmunoterapia/métodos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Ratas , Ratas Wistar , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...