RESUMEN
BACKGROUND: Bacterial cancer therapy was first trialled in patients at the end of the nineteenth century. More recently, tumour-targeting bacteria have been harnessed to deliver plasmid-expressed therapeutic interfering RNA to a range of solid tumours. A major limitation to clinical translation of this is the short-term nature of RNA interference in vivo due to plasmid instability. To overcome this, we sought to develop tumour-targeting attenuated bacteria that stably express shRNA by virtue of integration of an expression cassette within the bacterial chromosome and demonstrate therapeutic efficacy in vitro and in vivo. RESULTS: The attenuated tumour targeting Salmonella typhimurium SL7207 strain was modified to carry chromosomally integrated shRNA expression cassettes at the xylA locus. The colorectal cancer cell lines SW480, HCT116 and breast cancer cell line MCF7 were used to demonstrate the ability of these modified strains to perform intracellular infection and deliver effective RNA and protein knockdown of the target gene c-Myc. In vivo therapeutic efficacy was demonstrated using the Lgr5creERT2Apcflx/flx and BlgCreBrca2flx/flp53flx/flx orthotopic immunocompetent mouse models of colorectal and breast cancer, respectively. In vitro co-cultures of breast and colorectal cancer cell lines with modified SL7207 demonstrated a significant 50-95% (P < 0.01) reduction in RNA and protein expression with SL7207/c-Myc targeted strains. In vivo, following establishment of tumour tissue, a single intra-peritoneal administration of 1 × 106 CFU of SL7207/c-Myc was sufficient to permit tumour colonisation and significantly extend survival with no overt toxicity in control animals. CONCLUSIONS: In summary we have demonstrated that tumour tropic bacteria can be modified to safely deliver therapeutic levels of gene knockdown. This technology has the potential to specifically target primary and secondary solid tumours with personalised therapeutic payloads, providing new multi-cancer detection and treatment options with minimal off-target effects. Further understanding of the tropism mechanisms and impact on host immunity and microbiome is required to progress to clinical translation.
RESUMEN
LYN kinase is expressed in BRCA1 loss-of-function-dependent mouse mammary tumours, in the cells of origin of such tumours, and in human breast cancer. Suppressing LYN kinase activity in BRCA1-defective cell lines as well as in in vitro cultures of Brca1-null mouse mammary tumours is deleterious to their growth. Here, we examined the interaction between LYN kinase and BRCA1 loss-of-function in an in vivo mouse mammary tumour model, using conditional knockout Brca1 and Lyn alleles. Comparison of Brca1 tumour cohorts showed little difference in mammary tumour formation between animals that were wild type, heterozygous or homozygous for the conditional Lyn allele, although this was confounded by factors including incomplete Lyn recombination in some tumours. RNA-sequencing analysis demonstrated that tumours with high levels of Lyn gene expression had a slower doubling time, but this was not correlated with levels of LYN staining in tumour cells themselves. Rather, high Lyn expression and slower tumour growth were likely a result of B-cell infiltration. The multifaceted role of LYN indicates that it is likely to present difficulties as a therapeutic target in breast cancer.
Asunto(s)
Neoplasias de la Mama , Neoplasias Mamarias Animales , Animales , Femenino , Humanos , Ratones , Proteína BRCA1/genética , Mama/patología , Neoplasias de la Mama/genética , Línea Celular , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/patología , Ratones NoqueadosRESUMEN
A better understanding of the mechanisms generating tumour heterogeneity will allow better targeting of current therapies, identify potential resistance mechanisms and highlight new approaches for therapy. We have previously shown that in genetically modified mouse models carrying conditional oncogenic alleles, mammary tumour histotype varies depending on the combination of alleles, the cell type to which they are targeted and, in some cases, reproductive history. This suggests that tumour heterogeneity is not a purely stochastic process; rather, differential activation of signalling pathways leads to reproducible differences in tumour histotype. We propose the NOTCH signalling pathway as one such pathway. Here, we have crossed conditional knockout Notch1 or Notch2 alleles into an established mouse mammary tumour model. Notch1/2 deletion had no effect on tumour-specific survival; however, loss of Notch alleles resulted in a dose-dependent increase in metaplastic adenosquamous carcinomas (ASQCs). ASQCs and adenomyoepitheliomas (AMEs) also demonstrated a significant increase in AKT signalling independent of Notch status. Therefore, the NOTCH pathway is a suppressor of the ASQC phenotype, while increased PI3K/AKT signalling is associated with ASQC and AME tumours. We propose a model in which PI3K/AKT and NOTCH signalling act interact to determine mouse mammary tumour histotype.
RESUMEN
BACKGROUND: Osteosarcoma is a malignant bone neoplasia that has high welfare consequences for affected dogs. Awareness of breed and canine conformational risk factors for osteosarcoma can assist with earlier diagnosis and improved clinical management. Study of osteosarcoma in dogs also offers translational value for humans. Anonymised clinical data within VetCompass on dogs under primary veterinary care in the UK were searched for osteosarcoma cases. Descriptive statistics reported overall and breed-specific prevalence. Risk factor analysis used multivariable logistic regression modelling. RESULTS: From 905,552 study dogs, 331 osteosarcoma cases were confirmed yielding a one-year period prevalence of 0.037% (95% CI: 0.033-0.041). Breeds with the highest annual prevalence were the Scottish Deerhound (3.28%, 95% CI 0.90-8.18), Leonberger (1.48%, 95% CI 0.41- 3.75), Great Dane (0.87%, 95% CI 0.43- 1.55) and Rottweiler (0.84%, 95% CI 0.64-1.07). The median age at diagnosis was 9.64 years (IQR: 7.97-11.41). Following multivariable modelling, 11 breeds showed increased odds of osteosarcoma compared with crossbred dogs. Breeds with the highest odds included Scottish Deerhound (OR 118.40, 95% CI 41.12-340.95), Leonberger (OR 55.79, 95% CI 19.68-158.15), Great Dane (OR 34.24, 95% CI 17.81-65.83) and Rottweiler (OR 26.67, 95% CI 18.57-38.29). Compared with breeds with mesocephalic skull conformation, breeds with dolichocephalic skull conformation (OR 2.72, 95% CI 2.06-3.58) had increased odds while breeds with brachycephalic skull conformation showed reduced odds (OR 0.50, 95% CI 0.32-0.80). Chondrodystrophic breeds had 0.10 times the odds (95% CI 0.06-0.15) compared with non-chondrodystrophic breeds. Increasing adult bodyweight was associated with increasing odds of osteosarcoma. CONCLUSIONS: The current study cements the concept that breed, bodyweight and longer leg or longer skull length are all strong risk factors for osteosarcoma in dogs. With this awareness, veterinarians can update their clinical suspicion and judgement, breeders can select towards lower-risk animals, and researchers can robustly define more useful study populations for fundamental and translational bioscience.
Osteosarcoma describes a serious bone tumour. Affected dogs often show a bony or soft tissue swelling with severe pain. Canine and human osteosarcoma show similar patient characteristics, clinical course and tumour biology that make studies on canine osteosarcoma highly valuable to inform on the human disease. This study aimed to interrogate anonymised veterinary clinical data from the VetCompass Programme to explore whether demographic information on dogs such as breed, bodyweight and body shape could be useful to predict osteosarcoma. VetCompass shares anonymised veterinary clinical records for welfare-focused research. This study explored the records of 905,552 dogs under veterinary care in 2016 to identify all cases of osteosarcoma. Advanced statistical methods were used to evaluate links between demographic factors and the risk of osteosarcoma. From the overall study population of 905,552 dogs, there were 331 osteosarcoma cases identified to show a one-year period prevalence of 0.037%. The breeds with the highest frequency of osteosarcoma were the Scottish Deerhound (3.28%), Leonberger (1.48), Great Dane (0.87%), Rottweiler (0.84%) and Greyhound (0.62%). Eleven breeds showed increased risk of osteosarcoma compared with crossbred dogs. Breeds with the highest risk included Scottish Deerhound (× 118.40 times risk), Leonberger (× 55.79), Great Dane (× 34.24) and Rottweiler (× 26.67). Aging was progressively and strongly associated with increasing risk of osteosarcoma. Dogs weighing heavier that the average for their breed had 1.65 times the risk than animals weighing below the breed average. Insured dogs had 1.71 times the risk of being diagnosed with osteosarcoma compared with uninsured dogs which may indicate higher levels of healthcare given to insured dogs compared to uninsured dogs. Chondrodystrophic (short-legged) breeds had 0.10 times the risk of osteosarcoma compared with non-chondrodystrophic breeds. Compared with breeds with mesocephalic (average length) skull conformation, breeds with dolichocephalic (long) skull conformation (× 2.72) had increased odds of osteosarcoma while breeds with brachycephalic (short) skull conformation showed reduced risk (× 0.50). This study cements the concept that breed, bodyweight and longer leg or longer skull length all predispose to osteosarcoma in dogs. With this awareness, veterinarians can update their clinical suspicion and judgement, breeders can select towards lower-risk animals, and researchers can define more useful study populations for better research.
RESUMEN
BACKGROUND: There is limited information on the epidemiology of canine mammary tumours. This study aimed to estimate the incidence and risk factors for mammary tumours in UK bitches. METHODS: A nested case-control study was conducted within VetCompass to estimate the frequency and risk factors for clinically diagnosed mammary tumours during 2016 (VetCompass study). A second case-control study explored further breed associations for cases confirmed histopathologically compared to the VetCompass controls (laboratory study). Multivariable logistic regression was used to evaluate associations between risk factors and mammary tumours. RESULTS: The incidence of mammary tumours was 1340.7/100,000 per year (95% confidence interval: 1198.1-1483.3). A total of 222 clinical cases (VetCompass study) and 915 laboratory cases (laboratory study) were compared to 1515 VetCompass controls in the two analyses. In the VetCompass study, Springer and Cocker Spaniels, Boxers, Staffordshire Bull Terriers and Lhasa Apsos had increased odds of developing mammary tumours. Neutering was associated with reduced odds, while odds increased with increasing age and a history of pseudopregnancy. In the laboratory study, increasing age was associated with greater odds of mammary tumours, and the breeds most at risk were similar to those identified in the VetCompass study. LIMITATIONS: The timing of neutering was not consistently available. Comparing laboratory cases to VetCompass controls provided only exploratory evidence for the breed associations identified. CONCLUSIONS: The study provides an update on the frequency of canine mammary tumours.
Asunto(s)
Enfermedades de los Perros , Neoplasias Mamarias Animales , Femenino , Animales , Perros , Estudios de Casos y Controles , Enfermedades de los Perros/epidemiología , Factores de Riesgo , Neoplasias Mamarias Animales/epidemiología , Reino Unido/epidemiologíaRESUMEN
Metastatic prostate cancer is essentially incurable and is a leading cause of cancer-related morbidity and mortality in men, yet the underlying molecular mechanisms are poorly understood. Plexins are transmembrane receptors for semaphorins with divergent roles in many forms of cancer. We show here that prostate epithelial cell-specific expression of a mutant form of Plexin-B1 (P1597L) which was identified in metastatic deposits in patients with prostate cancer, significantly increases metastasis, in particular metastasis to distant sites, in two transgenic mouse models of prostate cancer (PbCre+Ptenfl /flKrasG12V and PbCre+Ptenfl /flp53fl/ fl ). In contrast, prostate epithelial cell-specific expression of wild-type (WT) Plexin-B1 in PbCre+Ptenfl /flKrasG12V mice significantly decreases metastasis, showing that a single clinically relevant Pro1597Leu amino-acid change converts Plexin-B1 from a metastasis-suppressor to a metastasis-promoter. Furthermore, PLXNB1P1597L significantly increased invasion of tumor cells into the prostate stroma, while PLXNB1WT reduced invasion, suggesting that Plexin-B1 has a role in the initial stages of metastasis. Deletion of RhoA/C or PDZRhoGEF in Ptenfl /flKrasG12VPLXNB1P1597L mice suppressed metastasis, implicating the Rho/ROCK pathway in this phenotypic switch. Germline deletion of Plexin-B1, to model anti-Plexin-B1 therapy, significantly decreased invasion and metastasis in both models. Our results demonstrate that Plexin-B1 plays a complex yet significant role in metastasis in mouse models of prostate cancer and is a potential therapeutic target to block the lethal spread of the disease. Significance: Few therapeutic targets have been identified specifically for preventing locally invasive/oligometastatic prostate cancer from becoming more widely disseminated. Our findings suggest Plexin-B1 signaling, particularly from the clinically relevant P1597L mutant, is such a target.
Asunto(s)
Antineoplásicos , Neoplasias de la Próstata , Humanos , Masculino , Ratones , Animales , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Receptores de Superficie Celular/genética , Transducción de Señal/genética , Neoplasias de la Próstata/genética , Ratones TransgénicosRESUMEN
Mammary cancer is one of the most common neoplasms of dogs, primarily bitches. While studies have been carried out identifying differing risk of mammary neoplasia in different dog breeds, few studies have reported associations between dog breeds and clinical features such as number of neoplastic lesions found in an individual case or the likelihood of lesions being benign or malignant. Such epidemiological studies are essential as a foundation for exploring potential genetic drivers of mammary tumour behaviour. Here, we have examined associations between breed, age and neuter status and the odds of a diagnosis of a mammary epithelial-origin neoplastic lesion (as opposed to any other histopathological diagnosis from a biopsied lesion) as well as the odds of a bitch presenting with either a single mammary lesion or multiple lesions, and the odds that those lesions are benign or malignant. The study population consisted of 129,258 samples from bitches, including 13,401 mammary epithelial neoplasms, submitted for histological assessment to a single histopathology laboratory between 2008 and 2021.In multivariable analysis, breed, age and neuter status were all significantly associated with the odds of a diagnosis of a mammary epithelial-origin neoplastic lesion. Smaller breeds were more likely to receive such a diagnosis. In cases diagnosed with a mammary epithelial neoplasm, these three factors were also significantly associated with the odds of diagnosis with a malignant lesion and of diagnosis with multiple lesions. Notably, while neutered animals were less likely to have a mammary epithelial neoplasm diagnosed, and were less likely to have multiple neoplasms, they were more likely to have malignant disease. Exploration of the patterns of risk of developing malignant disease, or multiple lesions, across individual breeds showed no breed with increased odds of both outcomes. Breeds with altered odds compared to the Crossbreed baseline were either at increased risk of malignant disease and decreased risk of multiple lesions, or vice versa, or they were at significantly altered odds of one outcome with no change in the other outcome. Our analysis supports the hypothesis that age, neuter status and intrinsic biological and genetic factors all combine to influence the biological heterogeneity of canine mammary neoplasia.
Asunto(s)
Neoplasias de la Mama , Carcinoma , Neoplasias Mamarias Animales , Femenino , Perros , Humanos , Animales , Neoplasias Mamarias Animales/diagnóstico , Neoplasias Mamarias Animales/epidemiología , Neoplasias Mamarias Animales/patología , Carcinoma/patología , Estudios Epidemiológicos , CruzamientoRESUMEN
Circulating tumor cell (CTC) clusters are present in cancer patients with severe metastasis, resulting in poor clinical outcomes. However, CTC clusters have not been studied as extensively as single CTCs, and the clinical utility of CTC clusters remains largely unknown. In this study, we aim sought to explore the feasibility of NanoVelcro Chips to simultaneously detect both single CTCs and CTC clusters with negligible perturbation to their intrinsic properties in neuroendocrine tumors (NETs). We discovered frequent CTC clusters in patients with advanced NETs and examined their potential roles, together with single NET CTCs, as novel biomarkers of patient response following peptide receptor radionuclide therapy (PRRT). We observed dynamic changes in both total NET CTCs and NET CTC cluster counts in NET patients undergoing PRRT which correlated with clinical outcome. These preliminary findings suggest that CTC clusters, along with single CTCs, offer a potential non-invasive option to monitor the treatment response in NET patients undergoing PRRT.
Asunto(s)
Técnicas Biosensibles , Células Neoplásicas Circulantes , Tumores Neuroendocrinos , Biomarcadores de Tumor , Humanos , Metástasis de la Neoplasia , Células Neoplásicas Circulantes/patologíaRESUMEN
Despite the significant advances in cancer research made in recent years, this disease remains one of the leading causes of death worldwide. In part, this is due to the fact that after therapy, a subpopulation of self-renewing tumor cells can survive and promote cancer relapse, resistance to therapies and metastasis. Targeting these cancer stem cells (CSCs) is therefore essential to improve the clinical outcome of cancer patients. In this sense, multi-targeted drugs may be promising agents targeting CSC-associated multifocal effects. We have previously constructed different human pancreatic ribonuclease (RNase) variants that are cytotoxic for tumor cells due to a non-classical nuclear localization signal introduced in their sequence. These cytotoxic RNases affect the expression of multiple genes involved in deregulated metabolic and signaling pathways in cancer cells and are highly cytotoxic for multidrug-resistant tumor cell lines. Here, we show that these cytotoxic nuclear-directed RNases are highly selective for tumor cell lines grown in 3D, inhibit CSCs' development and diminish the self-renewal capacity of the CSCs population. Moreover, these human RNase variants reduce the migration and invasiveness of highly invasive breast cancer cells and downregulate N-cadherin expression.
RESUMEN
In this paper, a combined pH and impedance sensing system suitable for portable measurements is presented. The sensor outputs are converted directly to frequency or pulse width. The pH sensor is based on a voltage clamp topology that uses charging and discharging capacitors, voltage window comparators, and an SR-Latch to convert the output to frequency. The impedance to frequency sensor is based on current and voltage comparators and an SR-Latch. The pH system based on ISFET transistors is experimentally verified with on chip electrodes while the impedance sensor is characterized with discrete electronic components. The portable system is implemented with two chips and an external multi-electrode array into a portable system. Resistance, capacitance, and pH are experimentally measured using buffer solutions to simulate a water quality monitoring application. The system is implemented in a portable format and all modules, excluding the commercial microprocessor, consume an average power of 56 µW with an area of 0.006 mm 2 using a 180 nm technology.
Asunto(s)
Impedancia Eléctrica , Capacidad Eléctrica , Electrodos , Concentración de Iones de HidrógenoRESUMEN
Understanding the mechanisms underlying tumour heterogeneity is key to the development of treatments that can target specific tumour subtypes. We have previously targeted CRE recombinase-dependent conditional deletion of the tumour suppressor genes Brca1, Brca2, p53 (also known as Trp53) and/or Pten to basal or luminal oestrogen receptor-negative (ER-) cells of the mouse mammary epithelium. We demonstrated that both the cell-of-origin and the tumour-initiating genetic lesions cooperate to influence mammary tumour phenotype. Here, we use a CRE-activated HER2 orthologue to specifically target HER2/ERBB2 oncogenic activity to basal or luminal ER- mammary epithelial cells and perform a detailed analysis of the tumours that develop. We find that, in contrast to our previous studies, basal epithelial cells are less sensitive to transformation by the activated NeuKI allele, with mammary epithelial tumour formation largely confined to luminal ER- cells. Histologically, most tumours that developed were classified as either adenocarcinomas of no special type or as metaplastic adenosquamous tumours. The former were typically characterized by amplification of the NeuNT/Erbb2 locus; in contrast, tumours displaying squamous metaplasia were enriched in animals that had been through at least one pregnancy and typically had lower levels of NeuNT/Erbb2 locus amplification but had activated canonical WNT signalling. Squamous changes in these tumours were associated with activation of the epidermal differentiation cluster. Thus, in this model of HER2 breast cancer, cell-of-origin, reproductive history, NeuNT/Erbb2 locus amplification and the activation of specific branches of the WNT signalling pathway all interact to drive inter-tumour heterogeneity.
Asunto(s)
Amplificación de Genes , Sitios Genéticos , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/patología , Receptor ErbB-2/genética , Reproducción/fisiología , Vía de Señalización Wnt/genética , Alelos , Animales , Carcinogénesis/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Modelos Animales de Enfermedad , Epitelio/patología , Femenino , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica , Integrasas/metabolismo , Estimación de Kaplan-Meier , Glándulas Mamarias Animales/patología , Metaplasia , Ratones Transgénicos , FenotipoRESUMEN
BACKGROUND: Osteosarcoma is an aggressive and painful bone neoplasm in dogs. Previous studies have reported epidemiological associations suggesting that large body mass, long bone length and the genetics of certain breeds including the Rottweiler are associated with elevated osteosarcoma risk. However, these studies were often limited by selection bias and confounding factors, and have rarely offered insights into breed-associated protection for osteosarcoma. The current study includes 1756 appendicular and axial osteosarcoma cases presenting to VPG Histology (Bristol, UK) compared against a control population of 905,211 dogs without osteosarcoma from primary care electronic patient records in the VetCompass™ dataset. METHODS AND STUDY DESIGN: Retrospective, case-control study. Multivariable logistic regression analysis explored associations between demographic risk factors (including breed, chondrodystrophy, age, sex/neuter status, skull-shape, and body mass) and osteosarcoma of all anatomical sites. RESULTS: We identified several breeds with increased and reduced odds of osteosarcoma. At highest risk were the Rottweiler and Great Dane, with > 10 times the odds of osteosarcoma compared with crossbreds, and the Rhodesian Ridgeback, which has not featured in previous lists of at-risk breeds for osteosarcoma, and had an odds ratio of 11.31 (95% confidence interval 7.37-17.35). Breeds at lowest risk of osteosarcoma (protected breeds) included the Bichon Frise, the French Bulldog and the Cavalier King Charles Spaniel, all with odd ratios of less than 0.30 compared with crossbreds. Body mass was strongly associated with osteosarcoma risk; dogs over 40 kg exhibited osteosarcoma odds of 45.44 (95% confidence interval 33.74-61.20) compared with dogs less than 10 kg. Chondrodystrophic breeds had an osteosarcoma odds ratio of 0.13 (95% confidence interval 0.11-0.16) compared with non-chondrodystrophic breeds. CONCLUSIONS: This study provides evidence of strong breed-associated osteosarcoma risk and protection, suggesting a genetic basis for osteosarcoma pathogenesis. It highlights that breeds selected for long legs/large body mass are generally overrepresented amongst at-risk breeds, whilst those selected for short leg length/small body mass are generally protected. These findings could inform genetic studies to identify osteosarcoma risk alleles in canines and humans; as well as increasing awareness amongst veterinarians and owners, resulting in improved breeding practices and clinical management of osteosarcoma in dogs.
RESUMEN
Leveraging the endogenous homology-directed repair (HDR) pathway, the CRISPR-Cas9 gene-editing system can be applied to knock in a therapeutic gene at a designated site in the genome, offering a general therapeutic solution for treating genetic diseases such as hemoglobinopathies. Here, a combined supramolecular nanoparticle (SMNP)/supramolecular nanosubstrate-mediated delivery (SNSMD) strategy is used to facilitate CRISPR-Cas9 knockin of the hemoglobin beta (HBB) gene into the adeno-associated virus integration site 1 (AAVS1) safe-harbor site of an engineered K562 3.21 cell line harboring the sickle cell disease mutation. Through stepwise treatments of the two SMNP vectors encapsulating a Cas9â¢single-guide RNA (sgRNA) complex and an HBB/green fluorescent protein (GFP)-encoding plasmid, CRISPR-Cas9 knockin was successfully achieved via HDR. Last, the HBB/GFP-knockin K562 3.21 cells were introduced into mice via intraperitoneal injection to show their in vivo proliferative potential. This proof-of-concept demonstration paves the way for general gene therapeutic solutions for treating hemoglobinopathies.
Asunto(s)
Sistemas CRISPR-Cas , Hemoglobinopatías , Animales , Edición Génica , Vectores Genéticos/genética , Hemoglobinopatías/genética , Hemoglobinopatías/terapia , Hemoglobinas/genética , RatonesRESUMEN
The nature of the tumor microenvironment (TME) influences the ability of tumor-specific T cells to control tumor growth. In this study, we performed an unbiased comparison of the TME of regulatory T-cell (Treg)-replete and Treg-depleted carcinogen-induced tumors, including Treg-depleted responding (regressing) and non-responding (growing) tumors. This analysis revealed an inverse relationship between extracellular matrix (ECM) and T-cell infiltrates where responding tumors were T-cell rich and ECM poor, whereas the converse was observed in non-responder tumors. For this reason, we hypothesized that the ECM acted as a barrier to successful T-cell infiltration and tumor rejection. However, further experiments revealed that this was not the case but instead showed that an effective T-cell response dramatically altered the density of ECM in the TME. Along with loss of ECM and high numbers of infiltrating T cells, responder tumors were distinguished by the development of lymphatic and blood vessel networks with specialized immune function. ECM-rich tumors exhibited a stem cell-like gene expression profile and superior tumor-initiating capacity, whereas such features were absent in responder tumors. Overall, these findings define an extended role for an effective immune response, not just in direct killing of tumor cells but in widescale remodeling of the TME to favor loss of ECM, elimination of cancer stem cells, and propagation of adaptive immunity.
Asunto(s)
Neoplasias/etiología , Células Madre Neoplásicas/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Microambiente Tumoral/inmunología , Animales , Línea Celular Tumoral , Matriz Extracelular , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Neoplasias/metabolismo , Neoplasias/patología , Microambiente Tumoral/genéticaRESUMEN
We report a covalent chemistry-based hepatocellular carcinoma (HCC)-specific extracellular vesicle (EV) purification system for early detection of HCC by performing digital scoring on the purified EVs. Earlier detection of HCC creates more opportunities for curative therapeutic interventions. EVs are present in circulation at relatively early stages of disease, providing potential opportunities for HCC early detection. We develop an HCC EV purification system (i.e., EV Click Chips) by synergistically integrating covalent chemistry-mediated EV capture/release, multimarker antibody cocktails, nanostructured substrates, and microfluidic chaotic mixers. We then explore the translational potential of EV Click Chips using 158 plasma samples of HCC patients and control cohorts. The purified HCC EVs are subjected to reverse-transcription droplet digital PCR for quantification of 10 HCC-specific mRNA markers and computation of digital scoring. The HCC EV-derived molecular signatures exhibit great potential for noninvasive early detection of HCC from at-risk cirrhotic patients with an area under receiver operator characteristic curve of 0.93 (95% CI, 0.86 to 1.00; sensitivity = 94.4%, specificity = 88.5%).
Asunto(s)
Biomarcadores de Tumor/aislamiento & purificación , Carcinoma Hepatocelular/diagnóstico , Detección Precoz del Cáncer/métodos , Vesículas Extracelulares/genética , Neoplasias Hepáticas/diagnóstico , Anciano , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/sangre , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Estudios de Casos y Controles , Química Clic/instrumentación , Química Clic/métodos , Química Computacional , Simulación por Computador , Diagnóstico Diferencial , Dimetilpolisiloxanos/química , Progresión de la Enfermedad , Detección Precoz del Cáncer/instrumentación , Femenino , Células Hep G2 , Humanos , Dispositivos Laboratorio en un Chip , Biopsia Líquida/instrumentación , Biopsia Líquida/métodos , Cirrosis Hepática/sangre , Cirrosis Hepática/patología , Neoplasias Hepáticas/sangre , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Masculino , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Persona de Mediana Edad , Nanoestructuras/química , Nanocables/química , Estadificación de Neoplasias , ARN Mensajero/genética , ARN Mensajero/aislamiento & purificación , Curva ROC , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/instrumentación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodosRESUMEN
The identification and molecular characterization of cellular hierarchies in complex tissues is key to understanding both normal cellular homeostasis and tumorigenesis. The mammary epithelium is a heterogeneous tissue consisting of two main cellular compartments, an outer basal layer containing myoepithelial cells and an inner luminal layer consisting of estrogen receptor-negative (ER-) ductal cells and secretory alveolar cells (in the fully functional differentiated tissue) and hormone-responsive estrogen receptor-positive (ER+) cells. Recent publications have used single-cell RNA-sequencing (scRNA-seq) analysis to decipher epithelial cell differentiation hierarchies in human and murine mammary glands, and reported the identification of new cell types and states based on the expression of the luminal progenitor cell marker KIT (c-Kit). These studies allow for comprehensive and unbiased analysis of the different cell types that constitute a heterogeneous tissue. Here we discuss scRNA-seq studies in the context of previous research in which mammary epithelial cell populations were molecularly and functionally characterized, and identified c-Kit+ progenitors and cell states analogous to those reported in the recent scRNA-seq studies.
RESUMEN
Oncogenic activation of the phosphatidylinositol-3-kinase (PI3K), protein kinase B (PKB/AKT), and mammalian target of rapamycin (mTOR) pathway is a frequent event in prostate cancer that facilitates tumor formation, disease progression and therapeutic resistance. Recent discoveries indicate that the complex crosstalk between the PI3K-AKT-mTOR pathway and multiple interacting cell signaling cascades can further promote prostate cancer progression and influence the sensitivity of prostate cancer cells to PI3K-AKT-mTOR-targeted therapies being explored in the clinic, as well as standard treatment approaches such as androgen-deprivation therapy (ADT). However, the full extent of the PI3K-AKT-mTOR signaling network during prostate tumorigenesis, invasive progression and disease recurrence remains to be determined. In this review, we outline the emerging diversity of the genetic alterations that lead to activated PI3K-AKT-mTOR signaling in prostate cancer, and discuss new mechanistic insights into the interplay between the PI3K-AKT-mTOR pathway and several key interacting oncogenic signaling cascades that can cooperate to facilitate prostate cancer growth and drug-resistance, specifically the androgen receptor (AR), mitogen-activated protein kinase (MAPK), and WNT signaling cascades. Ultimately, deepening our understanding of the broader PI3K-AKT-mTOR signaling network is crucial to aid patient stratification for PI3K-AKT-mTOR pathway-directed therapies, and to discover new therapeutic approaches for prostate cancer that improve patient outcome.
Asunto(s)
Fosfatidilinositol 3-Quinasa/metabolismo , Neoplasias de la Próstata/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Antagonistas de Andrógenos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Humanos , Masculino , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Recurrencia Local de Neoplasia/genética , Oncogenes , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/metabolismo , Neoplasias de la Próstata/genética , Receptores Androgénicos/metabolismo , Vía de Señalización Wnt/fisiologíaRESUMEN
Somatic copy number alterations (SCNAs) are important genetic drivers of many cancers. We investigated the feasibility of obtaining SCNA profiles from circulating tumor cells (CTCs) as a molecular liquid biopsy for hepatocellular carcinoma (HCC). CTCs from ten HCC patients underwent SCNA profiling. The Cancer Genome Atlas (TCGA) SCNA data were used to develop a cancer origin classification model, which was then evaluated for classifying 44 CTCs from multiple cancer types. Sequencing of 18 CTC samples (median: 4 CTCs/sample) from 10 HCC patients using a low-resolution whole-genome sequencing strategy (median: 0.88 million reads/sample) revealed frequent SCNAs in previously reported HCC regions such as 8q amplifications and 17p deletions. SCNA profiling revealed that CTCs share a median of 80% concordance with the primary tumor. CTCs had SCNAs not seen in the primary tumor, some with prognostic implications. Using a SCNA profiling model, the tissue of origin was correctly identified for 32/44 (73%) CTCs from 12/16 (75%) patients with different cancer types.
RESUMEN
Circulating rare cells in the blood are of great significance for both materials research and clinical applications. For example, circulating tumor cells (CTCs) have been demonstrated as useful biomarkers for "liquid biopsy" of the tumor. Circulating fetal nucleated cells (CFNCs) have shown potential in noninvasive prenatal diagnostics. However, it is technically challenging to detect and isolate circulating rare cells due to their extremely low abundance compared to hematologic cells. Nanostructured substrates offer a unique solution to address these challenges by providing local topographic interactions to strengthen cell adhesion and large surface areas for grafting capture agents, resulting in improved cell capture efficiency, purity, sensitivity, and reproducibility. In addition, rare-cell retrieval strategies, including stimulus-responsiveness and additive reagent-triggered release on different nanostructured substrates, allow for on-demand retrieval of the captured CTCs/CFNCs with high cell viability and molecular integrity. Several nanostructured substrate-enabled CTC/CFNC assays are observed maturing from enumeration and subclassification to molecular analyses. These can one day become powerful tools in disease diagnosis, prognostic prediction, and dynamic monitoring of therapeutic response-paving the way for personalized medical care.