Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(40): e2305961120, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37751556

RESUMEN

α-lipoic acid (LA) is an essential cofactor for mitochondrial dehydrogenases and is required for cell growth, metabolic fuel production, and antioxidant defense. In vitro, LA binds copper (Cu) with high affinity and as an endogenous membrane permeable metabolite could be advantageous in mitigating the consequences of Cu overload in human diseases. We tested this hypothesis in 3T3-L1 preadipocytes with inactivated Cu transporter Atp7a; these cells accumulate Cu and show morphologic changes and mitochondria impairment. Treatment with LA corrected the morphology of Atp7a-/- cells similar to the Cu chelator bathocuproinedisulfonate (BCS) and improved mitochondria function; however, the mechanisms of LA and BCS action were different. Unlike BCS, LA did not decrease intracellular Cu but instead increased selenium levels that were low in Atp7a-/- cells. Proteome analysis confirmed distinct cell responses to these compounds and identified upregulation of selenoproteins as the major effect of LA on preadipocytes. Upregulation of selenoproteins was associated with an improved GSH:GSSG ratio in cellular compartments, which was lowered by elevated Cu, and reversal of protein oxidation. Thus, LA diminishes toxic effects of elevated Cu by improving cellular redox environment. We also show that selenium levels are decreased in tissues of a Wilson disease animal model, especially in the liver, making LA an attractive candidate for supplemental treatment of this disease.


Asunto(s)
Selenio , Ácido Tióctico , Animales , Humanos , Ácido Tióctico/farmacología , Cobre , Selenio/farmacología , Oxidación-Reducción , Selenoproteínas/genética
2.
Open Heart ; 10(2)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37586845

RESUMEN

INTRODUCTION: Systemic low-grade inflammation is a fundamental pathophysiological mechanism of heart failure with preserved left ventricular ejection fraction (HFpEF). The efficacy of anti-inflammatory therapy in HFpEF is largely understudied. The aim of the study is to assess the anti-inflammatory effect of colchicine in HFpEF by looking at inflammatory biomarkers: high-sensitivity C reactive protein (hsCRP) and soluble suppression of tumorigenicity 2 (sST2). METHODS AND ANALYSIS: This is a single-centre, prospective, randomised controlled, open-label, blinded-endpoint crossover clinical trial of stable but symptomatic patients with HFpEF. Patients will be randomised to either colchicine treatment 0.5 mg two times per day or usual care for 12 weeks followed by a 2-week washout period and crossover to 12 weeks of treatment with the alternate therapy. The primary objective is to investigate if administration of colchicine compared with usual care reduces inflammation in patients with HFpEF measured by primary endpoint sST2 and co-primary endpoint hsCRP at baseline and 12-week follow-up. Secondary objective is to determine if treatment with colchicine influences N-terminal pro-B-type natriuretic peptide levels, left ventricular diastolic function and remodelling, right ventricular systolic function and left atrial volumetric characteristics. We are aiming to enrol a total of 40 participants. This trial will answer the question if colchicine treatment reduces systemic low-grade inflammation and influences left ventricular diastolic function and remodelling with patients with HFpEF. ETHICS AND DISSEMINATION: Ethical approval was obtained from the Ethics Committee of Sechenov University (reference: 03-22). TRIAL REGISTRATION NUMBER: NCT05637398.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/tratamiento farmacológico , Colchicina/efectos adversos , Proteína C-Reactiva , Estudios Prospectivos , Volumen Sistólico , Función Ventricular Izquierda , Inflamación
3.
Nat Plants ; 9(6): 987-1000, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37156858

RESUMEN

In plant cells, translation occurs in three compartments: the cytosol, the plastids and the mitochondria. While the structures of the (prokaryotic-type) ribosomes in plastids and mitochondria are well characterized, high-resolution structures of the eukaryotic 80S ribosomes in the cytosol have been lacking. Here the structure of translating tobacco (Nicotiana tabacum) 80S ribosomes was solved by cryo-electron microscopy with a global resolution of 2.2 Å. The ribosome structure includes two tRNAs, decoded mRNA and the nascent peptide chain, thus providing insights into the molecular underpinnings of the cytosolic translation process in plants. The map displays conserved and plant-specific rRNA modifications and the positions of numerous ionic cofactors, and it uncovers the role of monovalent ions in the decoding centre. The model of the plant 80S ribosome enables broad phylogenetic comparisons that reveal commonalities and differences in the ribosomes of plants and those of other eukaryotes, thus putting our knowledge about eukaryotic translation on a firmer footing.


Asunto(s)
ARN Ribosómico , Ribosomas , Citosol , ARN Ribosómico/química , Microscopía por Crioelectrón , Filogenia , Modelos Moleculares , Ribosomas/química , Plantas/genética , Nicotiana/genética
4.
Molecules ; 27(10)2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35630637

RESUMEN

The tight binding of Cu and Zn ions to superoxide dismutase 1 (SOD1) maintains the protein stability, associated with amyotrophic lateral sclerosis (ALS). Yet, the quantitative studies remain to be explored for the metal-binding affinity of wild-type SOD1 and its mutants. We have investigated the demetallation of Cu,Zn-SOD1 and its ALS-related G93A mutant in the presence of different standard metal ion chelators at varying temperatures by using an LC-ICP MS-based approach and fast size-exclusion chromatography. Our results showed that from the slow first-order kinetics both metal ions Zn2+ and Cu2+ were released simultaneously from the protein at elevated temperatures. The rate of the release depends on the concentration of chelating ligands but is almost independent of their metal-binding affinities. Similar studies with the G93A mutant of Cu,Zn-SOD1 revealed slightly faster metal-release. The demetallation of Cu,Zn-SOD1 comes always to completion, which hindered the calculation of the KD values. From the Arrhenius plots of the demetallation in the absence of chelators ΔH‡ = 173 kJ/mol for wt and 191 kJ/mol for G93A mutant Cu,Zn-SOD1 was estimated. Obtained high ΔH values are indicative of the occurrence of protein conformational changes before demetallation and we concluded that Cu,Zn-SOD1 complex is in native conditions kinetically inert. The fibrillization of both forms of SOD1 was similar.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/genética , Quelantes , Cobre/química , Humanos , Iones , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genética , Zinc/metabolismo
5.
Sci Rep ; 10(1): 5686, 2020 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-32231266

RESUMEN

It has been reported that Cu(II) ions in human blood are bound mainly to serum albumin (HSA), ceruloplasmin (CP), alpha-2-macroglobulin (α2M) and His, however, data for α2M are very limited and the thermodynamics and kinetics of the copper distribution are not known. We have applied a new LC-ICP MS-based approach for direct determination of Cu(II)-binding affinities of HSA, CP and α2M in the presence of competing Cu(II)-binding reference ligands including His. The ligands affected both the rate of metal release from Cu•HSA complex and the value of KD. Slow release and KD = 0.90 pM was observed with nitrilotriacetic acid (NTA), whereas His showed fast release and substantially lower KD = 34.7 fM (50 mM HEPES, 50 mM NaCl, pH 7.4), which was explained with formation of ternary His•Cu•HSA complex. High mM concentrations of EDTA were not able to elicit metal release from metallated CP at pH 7.4 and therefore it was impossible to determine the KD value for CP. In contrast to earlier inconclusive evidence, we show that α2M does not bind Cu(II) ions. In the human blood serum ~75% of Cu(II) ions are in a nonexchangeable manner bound to CP and the rest exchangeable copper is in an equilibrium between HSA (~25%) and Cu(II)-His-Xaa ternary complexes (~0.2%).


Asunto(s)
Cobre/sangre , Cobre/química , Cobre/metabolismo , Ceruloplasmina/metabolismo , Humanos , Cinética , Ligandos , alfa 2-Macroglobulinas Asociadas al Embarazo/metabolismo , Unión Proteica , Albúmina Sérica/metabolismo , Termodinámica
6.
FEBS Open Bio ; 8(6): 923-931, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29928572

RESUMEN

Zinc finger (ZF) protein motifs, stabilized by binding of Zn(II), typically function as interaction modules that bind nucleic acids, proteins and other molecules. The elucidation of the redox states of ZF proteins in cellular conditions, which depend on their midpoint redox potentials, is important for understanding of ZF functioning. In the present study we determined the midpoint redox potentials for representatives of Cys2His2 and Cys4 types of ZF proteins in apo and Zn(II)-bound forms using electrospray ionization mass spectrometry. The midpoint redox potentials of the apo forms of Cys2His2 and Cys4 ZF proteins were -326 and -365 mV (pH 7.5), respectively. These values are close to the cytosolic redox potential of approx. -350 mV (pH 7.5) and thus we can conclude that the apo form of Cys2His2-type ZF proteins is predominantly reduced but apo forms of Cys4-type ZF proteins should be substantially oxidized in the cytoplasm. As expected, Zn(II) binding stabilized the reduced forms of both ZF proteins: the corresponding redox potential values were -284 and -301 mV, respectively. Consequently, binding of Zn(II) ions to ZF motifs can act as a sensitive switch that activates the functioning of the ZF motifs within the cell, and also protects them from oxidation and can function as part of a redox-sensitive regulation mechanism of cellular functions.

7.
Sci Rep ; 8(1): 1463, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29362485

RESUMEN

Wilson disease is an autosomal recessive genetic disorder caused by loss-of-function mutations in the P-type copper ATPase, ATP7B, which leads to toxic accumulation of copper mainly in the liver and brain. Wilson disease is treatable, primarily by copper-chelation therapy, which promotes copper excretion. Although several de-coppering drugs are currently available, their Cu(I)-binding affinities have not been quantitatively characterized. Here we determined the Cu(I)-binding affinities of five major de-coppering drugs - D-penicillamine, trientine, 2,3-dimercapto-1-propanol, meso-2,3-dimercaptosuccinate and tetrathiomolybdate - by exploring their ability to extract Cu(I) ions from two Cu(I)-binding proteins, the copper chaperone for cytochrome c oxidase, Cox17, and metallothionein. We report that the Cu(I)-binding affinity of these drugs varies by four orders of magnitude and correlates positively with the number of sulfur atoms in the drug molecule and negatively with the number of atoms separating two SH groups. Based on the analysis of structure-activity relationship and determined Cu(I)-binding affinity, we hypothesize that the endogenous biologically active substance, α-lipoic acid, may be suitable for the treatment of Wilson disease. Our hypothesis is supported by cell culture experiments where α-lipoic acid protected hepatic cells from copper toxicity. These results provide a basis for elaboration of new generation drugs that may provide better therapeutic outcomes.


Asunto(s)
Quelantes/metabolismo , Cobre/metabolismo , Hepatocitos/citología , Ácido Tióctico/farmacología , Apoptosis/efectos de los fármacos , Proteínas Portadoras/metabolismo , Línea Celular , Proliferación Celular , Quelantes/farmacología , Cobre/toxicidad , Proteínas Transportadoras de Cobre , Hepatocitos/efectos de los fármacos , Degeneración Hepatolenticular/tratamiento farmacológico , Humanos , Metalotioneína/metabolismo , Penicilamina/metabolismo , Penicilamina/farmacología , Ácido Tióctico/uso terapéutico , Trientina/metabolismo , Trientina/farmacología
8.
Chemphyschem ; 18(20): 2890-2898, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-28771905

RESUMEN

Five biotinylated photolabile compounds of the general structure Bt-L1 -NPPOC-X-L2 were synthesized, in which Bt represents a biotin unit, L1 is a 3,6-dioxa-n-octane or an n-hexane spacer, NPPOC is the photolabile protecting group 2-(2-nitrophenyl)propoxycarbonyl, and X is a thymidine unit as a representative nucleoside or a direct linkage to L2 , an ω-mercapto- or ω-aminohexoyl linker, for coupling to a substrate surface. These compounds served for testing the photocleavage kinetics in self-assembled monolayers on gold or glass by using surface plasmon resonance (SPR) on gold or reflectometric interference spectroscopy (RIfS) on glass, whereby the biotin moiety offered the possibility to increase the bulkiness of the leaving group by binding to streptavidin, which thereby largely enhanced the SPR or RIfS signals. The photokinetics, found to consist in a dominating fast stage and a less contributing slow stage, were quantitatively analyzed, and the quantum yield of the fast part reached values up to almost 1 in favorable cases. A direct comparison of the results from SPR and RIfS yielded almost identical results. The present investigations pave the way to in situ monitoring of the photolithographic synthesis of DNA chips.


Asunto(s)
Biotina/química , Vidrio/química , Oro/química , Nucleósidos/química , Nucleósidos/efectos de la radiación , Fenómenos Ópticos , Procesos Fotoquímicos , Estreptavidina/química , Cinética , Estructura Molecular , Resonancia por Plasmón de Superficie , Propiedades de Superficie
9.
Anal Biochem ; 532: 72-82, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28576440

RESUMEN

Maltose frequently occurs as intermediate of the central carbon metabolism of prokaryotic and eukaryotic cells. Various mutants possess elevated maltose levels. Maltose exists as two anomers, (α- and ß-form) which are rapidly interconverted without requiring enzyme-mediated catalysis. As maltose is often abundant together with other oligoglucans, selective quantification is essential. In this communication, we present a photometric maltose assay using 4-alpha-glucanotransferase (AtDPE2) from Arabidopsis thaliana. Under in vitro conditions, AtDPE2 utilizes maltose as glucosyl donor and glycogen as acceptor releasing the other hexosyl unit as free glucose which is photometrically quantified following enzymatic phosphorylation and oxidation. Under the conditions used, DPE2 does not noticeably react with other di- or oligosaccharides. Selectivity compares favorably with that of maltase frequently used in maltose assays. Reducing end interconversion of the two maltose anomers is in rapid equilibrium and, therefore, the novel assay measures total maltose contents. Furthermore, an AtDPE2-based continuous photometric assay is presented which allows to quantify ß-amylase activity and was found to be superior to a conventional test. Finally, the AtDPE2-based maltose assay was used to quantify leaf maltose contents of both Arabidopsis wild type and AtDPE2-deficient plants throughout the light-dark cycle. These data are presented together with assimilatory starch levels.


Asunto(s)
Arabidopsis/metabolismo , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Maltosa/metabolismo , Fotometría/métodos , Plantas Modificadas Genéticamente/metabolismo , Almidón/metabolismo , Sacarosa/metabolismo , Citosol/metabolismo , Pruebas de Enzimas/métodos , Hojas de la Planta/metabolismo , Especificidad por Sustrato
10.
BMC Plant Biol ; 14: 121, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24885763

RESUMEN

BACKGROUND: The versatile Vacuole Membrane Protein 1 (VMP1) has been previously investigated in six species. It has been shown to be essential in macroautophagy, where it takes part in autophagy initiation. In addition, VMP1 has been implicated in organellar biogenesis; endo-, exo- and phagocytosis, and protein secretion; apoptosis; and cell adhesion. These roles underly its proven involvement in pancreatitis, diabetes and cancer in humans. RESULTS: In this study we analyzed a VMP1 homologue from the green alga Chlamydomonas reinhardtii. CrVMP1 knockdown lines showed severe phenotypes, mainly affecting cell division as well as the morphology of cells and organelles. We also provide several pieces of evidence for its involvement in macroautophagy. CONCLUSION: Our study adds a novel role to VMP1's repertoire, namely the regulation of cytokinesis. Though the directness of the observed effects and the mechanisms underlying them remain to be defined, the protein's involvement in macroautophagy in Chlamydomonas, as found by us, suggests that CrVMP1 shares molecular characteristics with its animal and protist counterparts.


Asunto(s)
Forma de la Célula , Chlamydomonas/citología , Chlamydomonas/metabolismo , Citocinesis , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Autofagia/genética , Ciclo Celular/genética , Chlamydomonas/genética , Chlamydomonas/ultraestructura , Cromatografía Líquida de Alta Presión , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Genes de Plantas , Espectrometría de Masas , Metabolómica , Datos de Secuencia Molecular , Mutación/genética , Fenotipo , Proteínas de Plantas/química , Análisis de Componente Principal , Proteolisis , Alineación de Secuencia
11.
Int J Mol Sci ; 14(9): 18362-84, 2013 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-24013380

RESUMEN

Oligomers are commonly observed intermediates at the initial stages of amyloid fibril formation. They are toxic to neurons and cause decrease in neural transmission and long-term potentiation. We describe an in vitro study of the initial steps in amyloid fibril formation by human stefin B, which proved to be a good model system. Due to relative stability of the initial oligomers of stefin B, electrospray ionization mass spectrometry (ESI MS) could be applied in addition to size exclusion chromatography (SEC). These two techniques enabled us to separate and detect distinguished oligomers from the monomers: dimers, trimers, tetramers, up to decamers. The amyloid fibril formation process was followed at different pH and temperatures, including such conditions where the process was slow enough to detect the initial oligomeric species at the very beginning of the lag phase and those at the end of the lag phase. Taking into account the results of the lower-order oligomers transformations early in the process, we were able to propose an improved model for the stefin B fibril formation.


Asunto(s)
Amiloide/química , Cistatina B/química , Humanos , Concentración de Iones de Hidrógeno , Multimerización de Proteína , Espectrometría de Masa por Ionización de Electrospray , Temperatura
12.
J Biol Chem ; 288(40): 28581-98, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-23950181

RESUMEN

Controlled conversion of leaf starch to sucrose at night is essential for the normal growth of Arabidopsis. The conversion involves the cytosolic metabolism of maltose to hexose phosphates via an unusual, multidomain protein with 4-glucanotransferase activity, DPE2, believed to transfer glucosyl moieties to a complex heteroglycan prior to their conversion to hexose phosphate via a cytosolic phosphorylase. The significance of this complex pathway is unclear; conversion of maltose to hexose phosphate in bacteria proceeds via a more typical 4-glucanotransferase that does not require a heteroglycan acceptor. It has recently been suggested that DPE2 generates a heterogeneous series of terminal glucan chains on the heteroglycan that acts as a "glucosyl buffer" to ensure a constant rate of sucrose synthesis in the leaf at night. Alternatively, DPE2 and/or the heteroglycan may have specific properties important for their function in the plant. To distinguish between these ideas, we compared the properties of DPE2 with those of the Escherichia coli glucanotransferase MalQ. We found that MalQ cannot use the plant heteroglycan as an acceptor for glucosyl transfer. However, experimental and modeling approaches suggested that it can potentially generate a glucosyl buffer between maltose and hexose phosphate because, unlike DPE2, it can generate polydisperse malto-oligosaccharides from maltose. Consistent with this suggestion, MalQ is capable of restoring an essentially wild-type phenotype when expressed in mutant Arabidopsis plants lacking DPE2. In light of these findings, we discuss the possible evolutionary origins of the complex DPE2-heteroglycan pathway.


Asunto(s)
Oscuridad , Escherichia coli/enzimología , Glucosiltransferasas/metabolismo , Maltosa/metabolismo , Hojas de la Planta/metabolismo , Almidón/metabolismo , Sacarosa/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Tampones (Química) , Citosol/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Evolución Molecular , Glucosiltransferasas/química , Metabolómica , Mutación/genética , Oligosacáridos/metabolismo , Fenotipo , Plantas Modificadas Genéticamente , Estructura Terciaria de Proteína , Proteínas Recombinantes/aislamiento & purificación , Relación Estructura-Actividad , Especificidad por Sustrato
13.
Biochemistry ; 51(29): 5851-9, 2012 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-22746182

RESUMEN

Insulin-like growth factor 1 (IGF-1) is a 70-residue hormone containing three intramolecular disulfide bridges. IGF-1 and other growth factors are oxidatively folded in the endoplasmic reticulum and act primarily in the blood, under relatively oxidative conditions. It is known that IGF-1 exists in various intracellular and extracellular compartments in the oxidized form; however, the reduction potential of IGF-1 and the ability of fully reduced IGF-1, which contains six cysteine residues, to bind transition metal ions are not known. In this work, we determine that the redox potential of human IGF-1 is equal to -332 mV and the reduced form of hIGF-1 can bind cooperatively four Cu(+) ions, most probably into a tetracopper-hexathiolate cluster. The Cu(+) binding affinity of hIGF-1 is, however, approximately 3 times lower than that for the copper chaperones; thus, we can conclude that fully reduced hIGF-1 cannot compete with known Cu(+)-binding proteins.


Asunto(s)
Cobre/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Ditiotreitol/metabolismo , Humanos , Factor I del Crecimiento Similar a la Insulina/química , Mercaptoetanol/metabolismo , Modelos Moleculares , Oxidación-Reducción , Unión Proteica
14.
Nucleic Acids Res ; 38(22): 8039-50, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20705650

RESUMEN

eIF4E-binding proteins (4E-BPs) regulate translation of mRNAs in eukaryotes. However the extent to which specific mRNA targets are regulated by 4E-BPs remains unknown. We performed translational profiling by microarray analysis of polysome and monosome associated mRNAs in wild-type and mutant cells to identify mRNAs in yeast regulated by the 4E-BPs Caf20p and Eap1p; the first-global comparison of 4E-BP target mRNAs. We find that yeast 4E-BPs modulate the translation of >1000 genes. Most target mRNAs differ between the 4E-BPs revealing mRNA specificity for translational control by each 4E-BP. This is supported by observations that eap1Δ and caf20Δ cells have different nitrogen source utilization defects, implying different mRNA targets. To account for the mRNA specificity shown by each 4E-BP, we found correlations between our data sets and previously determined targets of yeast mRNA-binding proteins. We used affinity chromatography experiments to uncover specific RNA-stabilized complexes formed between Caf20p and Puf4p/Puf5p and between Eap1p and Puf1p/Puf2p. Thus the combined action of each 4E-BP with specific 3'-UTR-binding proteins mediates mRNA-specific translational control in yeast, showing that this form of translational control is more widely employed than previously thought.


Asunto(s)
Factores Eucarióticos de Iniciación/fisiología , Regulación Fúngica de la Expresión Génica , Biosíntesis de Proteínas , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Factores de Transcripción/fisiología , Aminoácidos/metabolismo , Ciclinas/genética , Factores Eucarióticos de Iniciación/genética , Eliminación de Gen , Nitrógeno/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Transcripción Genética
15.
Biochem J ; 430(3): 511-8, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20632994

RESUMEN

Insulin, a 51-residue peptide hormone, is an intrinsically amyloidogenic peptide, forming amyloid fibrils in vitro. In the secretory granules, insulin is densely packed together with Zn(II) into crystals of Zn(2)Insulin(6) hexamer, which assures osmotic stability of vesicles and prevents fibrillation of the peptide. However, after release from the pancreatic beta-cells, insulin dissociates into active monomers, which tend to fibrillize not only at acidic, but also at physiological, pH values. The effect of co-secreted Zn(II) ions on the fibrillation of monomeric insulin is unknown, however, it might prevent insulin fibrillation. We showed that Zn(II) inhibits fibrillation of monomeric insulin at physiological pH values by forming a soluble Zn(II)-insulin complex. The inhibitory effect of Zn(II) ions is very strong at pH 7.3 (IC(50)=3.5 microM), whereas at pH 5.5 it progressively weakens, pointing towards participation of the histidine residue(s) in complex formation. The results obtained indicate that Zn(II) ions might suppress fibrillation of insulin at its release sites and in circulation. It is hypothesized that misfolded oligomeric intermediates occurring in the insulin fibrillation pathway, especially in zinc-deficient conditions, might induce autoantibodies against insulin, which leads to beta-cell damage and autoimmune Type 1 diabetes.


Asunto(s)
Amiloide/química , Insulina/química , Compuestos Organometálicos/química , Zinc/química , Algoritmos , Amiloide/metabolismo , Amiloide/ultraestructura , Concentración de Iones de Hidrógeno , Insulina/metabolismo , Iones , Cinética , Microscopía Electrónica de Transmisión , Compuestos Organometálicos/metabolismo , Unión Proteica , Multimerización de Proteína , Espectrometría de Masa por Ionización de Electrospray , Temperatura , Zinc/metabolismo
17.
Langmuir ; 25(18): 10794-801, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19603744

RESUMEN

The formation of self-assembled monolayers (SAMs) on gold by 2-(5-iodo-2-nitrophenyl) propoxycarbonyl (I-NPPOC)-protected thymidine with an attached mercaptohexyl succinate linker and the kinetics of photochemical release of the I-NPPOC group were monitored using X-ray photoelectron spectroscopy (XPS) and surface plasmon resonance (SPR) detection. In the XPS spectra, the iodine peaks allowed for specific and accurate monitoring of the presence and loss of I-NPPOC groups on the surface. In the SPR experiment, the overall signal change on photoillumination is in accord with a theoretical estimation of the density of I-NPPOC groups in a dense monolayer. The kinetics roughly follow a biexponential time dependence with two very different time constants, corresponding to photochemical quantum yields of 0.22 and 0.0032, respectively.


Asunto(s)
Oro/química , Timidina/análogos & derivados , Timidina/química , Adsorción , Electrones , Yodo/química , Cinética , Estructura Molecular , Fotoquímica , Análisis Espectral , Ácido Succínico/química , Resonancia por Plasmón de Superficie , Tionas/química , Rayos X
18.
J Exp Bot ; 60(10): 2907-22, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19325165

RESUMEN

Starch is an important plant product widely used as a nutrient, as a source of renewable energy, and for many technological applications. In plants, starch is the almost ubiquitous storage carbohydrate whereas most heterotrophic prokaryotes and eukaryotes rely on glycogen. Despite close similarities in basic chemical features, starch and glycogen differ in both structural and physicochemical properties. Glycogen is a hydrosoluble macromolecule with evenly distributed branching points. Starch exists as a water-insoluble particle having a defined (and evolutionary conserved) internal structure. The biochemistry of starch requires the co-operation of up to 40 distinct (iso)enzymes whilst approximately 10 (iso)enzymes permit glycogen metabolism. The biosynthesis and degradation of native starch include the transition of carbohydrates from the soluble to the solid phase and vice versa. In this review, two novel aspects of the eukaryotic plastidial starch degradation are discussed: Firstly, biochemical reactions that take place at the surface of particulate glucans and mediate the phase transition of carbohydrates. Secondly, processes that occur downstream of the export of starch-derived sugars into the cytosol. Degradation of transitory starch mainly results in the formation of neutral sugars, such as glucose and maltose, that are transported into the cytosol via the respective translocators. The cytosolic metabolism of the neutral sugars includes the action of a hexokinase, a phosphoglucomutase, and a transglucosidase that utilizes high molecular weight glycans as a transient glucosyl acceptor or donor. Data are included on the transglucosidase (disproportionating isozyme 2) in Cyanophora paradoxa that accumulates storage carbohydrates in the cytosol rather than in the plastid.


Asunto(s)
Citosol/metabolismo , Plantas/metabolismo , Plastidios/metabolismo , Almidón/metabolismo , Proteínas de Plantas/metabolismo , Plantas/enzimología , Polisacáridos/metabolismo
19.
BMC Genomics ; 10: 7, 2009 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-19128476

RESUMEN

BACKGROUND: The control of gene expression in eukaryotic cells occurs both transcriptionally and post-transcriptionally. Although many genes are now known to be regulated at the translational level, in general, the mechanisms are poorly understood. We have previously presented polysomal gradient and array-based evidence that translational control is widespread in a significant number of genes when yeast cells are exposed to a range of stresses. Here we have re-examined these gene sets, considering the role of UTR sequences in the translational responses of these genes using recent large-scale datasets which define 5' and 3' transcriptional ends for many yeast genes. In particular, we highlight the potential role of 5' UTRs and upstream open reading frames (uORFs). RESULTS: We show a highly significant enrichment in specific GO functional classes for genes that are translationally up- and down-regulated under given stresses (e.g. carbohydrate metabolism is up-regulated under amino acid starvation). Cross-referencing these data with the stress response data we show that translationally upregulated genes have longer 5' UTRs, consistent with their role in translational regulation. In the first genome-wide study of uORFs in a set of mapped 5' UTRs, we show that uORFs are rare, being statistically under-represented in UTR sequences. However, they have distinct compositional biases consistent with their putative role in translational control and are more common in genes which are apparently translationally up-regulated. CONCLUSION: These results demonstrate a central regulatory role for UTR sequences, and 5' UTRs in particular, highlighting the significant role of uORFs in post-transcriptional control in yeast. Yeast uORFs are more highly conserved than has been suggested, lending further weight to their significance as functional elements involved in gene regulation. It also suggests a more complex and novel mechanism of control, whereby uORFs permit genes to escape from a more general attenuation of translation under conditions of stress. However, since uORFs are relatively rare (only ~13% of yeast genes have them) there remain many unanswered questions as to how UTR elements can direct translational control of many hundreds of genes under stress.


Asunto(s)
Regiones no Traducidas 5' , Sistemas de Lectura Abierta , Procesamiento Postranscripcional del ARN , Saccharomyces cerevisiae/genética , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Transcripción Genética
20.
J Biol Chem ; 284(2): 966-73, 2009 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-18996839

RESUMEN

Global genome nucleotide excision repair (GG-NER) removes DNA damage from nontranscribing DNA. In Saccharomyces cerevisiae, the RAD7 and RAD16 genes are specifically required for GG-NER. We have reported that autonomously replicating sequence-binding factor 1 (ABF1) protein forms a stable complex with Rad7 and Rad16 proteins. ABF1 functions in transcription, replication, gene silencing, and NER in yeast. Here we show that binding of ABF1 to its DNA recognition sequence found at multiple genomic locations promotes efficient GG-NER in yeast. Mutation of the I silencer ABF1-binding site at the HMLalpha locus caused loss of ABF1 binding, which resulted in a domain of reduced GG-NER efficiency on one side of the ABF1-binding site. During GG-NER, nucleosome positioning at this site was not altered, and this correlated with an inability of the GG-NER complex to reposition nucleosomes in vitro.We discuss how the GG-NER complex might facilitate GG-NER while preventing unregulated gene transcription during this process.


Asunto(s)
Reparación del ADN/genética , ADN de Hongos/genética , Proteínas de Unión al ADN/metabolismo , Genoma Fúngico/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Sitios de Unión , Proteínas de Unión al ADN/genética , Mutación/genética , Nucleosomas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA