Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Elife ; 112022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35723585

RESUMEN

Understanding circuit-level manipulations that affect the brain's capacity for plasticity will inform the design of targeted interventions that enhance recovery after stroke. Following stroke, increased contralesional activity (e.g. use of the unaffected limb) can negatively influence recovery, but it is unknown which specific neural connections exert this influence, and to what extent increased contralesional activity affects systems- and molecular-level biomarkers of recovery. Here, we combine optogenetic photostimulation with optical intrinsic signal imaging to examine how contralesional excitatory activity affects cortical remodeling after stroke in mice. Following photothrombosis of left primary somatosensory forepaw (S1FP) cortex, mice either recovered spontaneously or received chronic optogenetic excitation of right S1FP over the course of 4 weeks. Contralesional excitation suppressed perilesional S1FP remapping and was associated with abnormal patterns of stimulus-evoked activity in the unaffected limb. This maneuver also prevented the restoration of resting-state functional connectivity (RSFC) within the S1FP network, RSFC in several networks functionally distinct from somatomotor regions, and resulted in persistent limb-use asymmetry. In stimulated mice, perilesional tissue exhibited transcriptional changes in several genes relevant for recovery. Our results suggest that contralesional excitation impedes local and global circuit reconnection through suppression of cortical activity and several neuroplasticity-related genes after stroke, and highlight the importance of site selection for targeted therapeutic interventions after focal ischemia.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Miembro Anterior , Ratones , Plasticidad Neuronal/fisiología , Recuperación de la Función/fisiología , Corteza Somatosensorial
2.
J Environ Manage ; 161: 303-308, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26197424

RESUMEN

The reuse and recycling of industrial solid wastes such as scrap metal is supported and encouraged both internationally and domestically, especially when such wastes can be used as substitutes for raw material. However, scrap metal processing facilities, such as mini-mills, have been identified as a source of mercury (Hg) emissions in the United States. This research aims to better define some of the key issues related to the source and nature of mercury in the scrap metal waste stream. Overall, it is difficult to pinpoint the key mercury sources feeding into scrap metal recycling facilities, quantify their associated mercury concentrations, or determine which chemical forms are most significant. Potential sources of mercury in scrap metal include mercury switches from discarded vehicles, electronic-based scrap from household appliances and related industrial systems, and Hg-impacted scrap metal from the oil and gas industry. The form of mercury associated with scrap metal varies and depends on the source type. The specific amount of mercury that can be adsorbed and retained by steel appears to be a function of both metallurgical and environmental factors. In general, the longer the steel is in contact with a fluid or condensate that contains measurable concentrations of elemental mercury, the greater the potential for mercury accumulation in that steel. Most mercury compounds are thermally unstable at elevated temperatures (i.e., above 350 °C). As such, the mercury associated with impacted scrap is expected to be volatilized out of the metal when it is heated during processing (e.g., shredding or torch cutting) or melted in a furnace. This release of fugitive gas (Hg vapor) and particulates, as well as Hg-impacted bag-house dust and control filters, could potentially pose an occupational exposure risk to workers at a scrap metal processing facility. Thus, identifying and characterizing the key sources of Hg-impacted scrap, and understanding the nature and extent of associated releases, represent a practical research need that is essential for improving the environmental management of Hg-impacted scrap and assessing measures to protect workers from potential health and safety hazards that might be posed by mercury and Hg-impacted scrap.


Asunto(s)
Contaminantes Ambientales/análisis , Mercurio/análisis , Metales , Acero , Humanos , Residuos Industriales/análisis , Metalurgia , Metales/análisis , Metales/química , Reciclaje , Estados Unidos
3.
Environ Sci Technol ; 37(10): 2060-6, 2003 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-12785508

RESUMEN

Certain petroleum production activities cause naturally occurring radioactive materials (NORM) to accumulate in concentrations above natural background levels, making safe and cost-effective management of such technologically enhanced NORM (TENORM) a key issue for the petroleum industry. As a result, both industry and regulators are interested in identifying cost-effective disposal alternatives that provide adequate protection of human health and the environment One such alternative, currently allowed in Michigan with restrictions, is the disposal of TENORM wastes in nonhazardous waste landfills. The disposal of petroleum industry wastes containing radium-226 (Ra-226) in nonhazardous landfills was modeled to evaluate the potential radiological doses and health risks to workers and the public. Multiple scenarios were considered in evaluating the potential risks associated with landfill operations and the future use of the property. The scenarios were defined, in part, to evaluate the Michigan policy; sensitivity analyses were conducted to evaluate the impact of key parameters on potential risks. The results indicate that the disposal of petroleum industry TENORM wastes in nonhazardous landfills in accordance with the Michigan policy and existing landfill regulations presents a negligible risk to most of the potential receptors considered in this study.


Asunto(s)
Radiación de Fondo , Exposición a Riesgos Ambientales , Industria Procesadora y de Extracción , Petróleo , Residuos Radiactivos/prevención & control , Eliminación de Residuos/métodos , Conservación de los Recursos Naturales , Exposición a Riesgos Ambientales/prevención & control , Michigan , Modelos de Riesgos Proporcionales , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA