Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
1.
Science ; 385(6715): 1311-1313, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39298605

RESUMEN

Highlights from the Science family of journals.

3.
Cell Rep ; 43(8): 114599, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39120971

RESUMEN

Down syndrome (DS), the genetic condition caused by trisomy 21 (T21), is characterized by delayed neurodevelopment, accelerated aging, and increased risk of many co-occurring conditions. Hypoxemia and dysregulated hematopoiesis have been documented in DS, but the underlying mechanisms and clinical consequences remain ill defined. We report an integrative multi-omic analysis of ∼400 research participants showing that people with DS display transcriptomic signatures indicative of elevated heme metabolism and increased hypoxic signaling across the lifespan, along with chronic overproduction of erythropoietin, elevated biomarkers of tissue-specific hypoxia, and hallmarks of stress erythropoiesis. Elevated heme metabolism, transcriptional signatures of hypoxia, and stress erythropoiesis are conserved in a mouse model of DS and associated with overexpression of select triplicated genes. These alterations are independent of the hyperactive interferon signaling characteristic of DS. These results reveal lifelong dysregulation of key oxygen-related processes that could contribute to the developmental and clinical hallmarks of DS.


Asunto(s)
Síndrome de Down , Eritropoyesis , Hemo , Hipoxia , Transducción de Señal , Síndrome de Down/metabolismo , Síndrome de Down/patología , Síndrome de Down/genética , Hemo/metabolismo , Humanos , Animales , Ratones , Hipoxia/metabolismo , Masculino , Femenino , Transcriptoma/genética , Niño , Adulto , Estrés Fisiológico , Eritropoyetina/metabolismo , Adolescente , Preescolar
4.
5.
Science ; 385(6712): 946-948, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39208089

RESUMEN

Highlights from the Science family of journals.

6.
Viruses ; 16(7)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39066320

RESUMEN

Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) continues to be a global threat due to its ability to evolve and generate new subvariants, leading to new waves of infection. Additionally, other coronaviruses like Middle East respiratory syndrome coronavirus (MERS-CoV, formerly known as hCoV-EMC), which first emerged in 2012, persist and continue to present a threat of severe illness to humans. The continued identification of novel coronaviruses, coupled with the potential for genetic recombination between different strains, raises the possibility of new coronavirus clades of global concern emerging. As a result, there is a pressing need for pan-CoV therapeutic drugs and vaccines. After the extensive optimization of an HCV protease inhibitor screening hit, a novel 3CLPro inhibitor (MK-7845) was discovered and subsequently profiled. MK-7845 exhibited nanomolar in vitro potency with broad spectrum activity against a panel of clinical SARS-CoV-2 subvariants and MERS-CoV. Furthermore, when administered orally, MK-7845 demonstrated a notable reduction in viral burdens by >6 log orders in the lungs of transgenic mice infected with SARS-CoV-2 (K18-hACE2 mice) and MERS-CoV (K18-hDDP4 mice).


Asunto(s)
Antivirales , SARS-CoV-2 , Animales , Ratones , SARS-CoV-2/efectos de los fármacos , Humanos , Antivirales/farmacología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Tratamiento Farmacológico de COVID-19 , Inhibidores de Proteasas/farmacología , COVID-19/virología , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología
7.
Science ; 385(6707): 402-404, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39052784

RESUMEN

Highlights from the Science family of journals.

8.
medRxiv ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38946973

RESUMEN

Individuals with Down syndrome (DS), the genetic condition caused by trisomy 21 (T21), display clear signs of immune dysregulation, including high rates of autoimmune disorders and severe complications from infections. Although it is well established that T21 causes increased interferon responses and JAK/STAT signaling, elevated autoantibodies, global immune remodeling, and hypercytokinemia, the interplay between these processes, the clinical manifestations of DS, and potential therapeutic interventions remain ill defined. Here, we report a comprehensive analysis of immune dysregulation at the clinical, cellular, and molecular level in hundreds of individuals with DS. We demonstrate multi-organ autoimmunity of pediatric onset concurrent with unexpected autoantibody-phenotype associations. Importantly, constitutive immune remodeling and hypercytokinemia occur from an early age prior to autoimmune diagnoses or autoantibody production. We then report the interim analysis of a Phase II clinical trial investigating the safety and efficacy of the JAK inhibitor tofacitinib through multiple clinical and molecular endpoints. Analysis of the first 10 participants to complete the 16-week study shows a good safety profile and no serious adverse events. Treatment reduced skin pathology in alopecia areata, psoriasis, and atopic dermatitis, while decreasing interferon scores, cytokine scores, and levels of pathogenic autoantibodies without overt immune suppression. Additional research is needed to define the effects of JAK inhibition on the broader developmental and clinical hallmarks of DS. ClinicalTrials.gov identifier: NCT04246372.

9.
Science ; 384(6700): 1078-1080, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38843347

RESUMEN

Highlights from the Science family of journals.

11.
Luminescence ; 39(6): e4794, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38887175

RESUMEN

Various 9-(substituted phenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonates possessing electron-withdrawing substituents have been synthesized. The effect of substituents on the stability of the acridinium esters (AEs) at various temperatures in different buffers and the chemiluminescent properties have been examined. There was little correlation between the chemiluminescent properties of AEs and the pKa values of their associated phenols, but the steric effects of the ortho-substituents in the phenoxy group, as well as their electron-withdrawing natures, seem to play an important role in determining the properties. In general, when two identical substituents are present in the 2- and 6-positions, the compound is significantly more stable than when only a single substituent is present, presumably because of greater steric hindrance from the second group. The exception is the 2,6-difluorophenyl ester, which is less stable than the 2-fluorophenyl ester, presumably because the fluoro group is small. Addition of a third electron-withdrawing substituent at the 4-position, where it has no steric influence, typically increases susceptibility to decomposition. The presence of a nitro group has a significant destabilizing effect on AEs. Of the AEs studied, the 4-chlorophenyl ester showed the greatest chemiluminescent yield, while the 2-iodo-6-(trifluoromethyl)phenyl ester group showed the greatest stability in low pH buffers.


Asunto(s)
Acridinas , Luminiscencia , Mesilatos , Acridinas/química , Acridinas/síntesis química , Mesilatos/química , Estructura Molecular , Mediciones Luminiscentes
12.
Nat Commun ; 15(1): 5473, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942750

RESUMEN

Individuals with Down syndrome, the genetic condition caused by trisomy 21, exhibit strong inter-individual variability in terms of developmental phenotypes and diagnosis of co-occurring conditions. The mechanisms underlying this variable developmental and clinical presentation await elucidation. We report an investigation of human chromosome 21 gene overexpression in hundreds of research participants with Down syndrome, which led to the identification of two major subsets of co-expressed genes. Using clustering analyses, we identified three main molecular subtypes of trisomy 21, based on differential overexpression patterns of chromosome 21 genes. We subsequently performed multiomics comparative analyses among subtypes using whole blood transcriptomes, plasma proteomes and metabolomes, and immune cell profiles. These efforts revealed strong heterogeneity in dysregulation of key pathophysiological processes across the three subtypes, underscored by differential multiomics signatures related to inflammation, immunity, cell growth and proliferation, and metabolism. We also observed distinct patterns of immune cell changes across subtypes. These findings provide insights into the molecular heterogeneity of trisomy 21 and lay the foundation for the development of personalized medicine approaches for the clinical management of Down syndrome.


Asunto(s)
Cromosomas Humanos Par 21 , Síndrome de Down , Síndrome de Down/genética , Síndrome de Down/inmunología , Humanos , Cromosomas Humanos Par 21/genética , Femenino , Transcriptoma , Masculino , Niño , Preescolar , Adulto , Perfilación de la Expresión Génica , Proteoma/metabolismo , Adolescente
13.
Science ; 384(6696): 632-634, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38723087

RESUMEN

Highlights from the Science family of journals.

14.
Science ; 384(6698): 871-873, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781360

RESUMEN

Highlights from the Science family of journals.

16.
Science ; 384(6693): 287-289, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38635715

RESUMEN

Highlights from the Science family of journals.

17.
ArXiv ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38463502

RESUMEN

Measuring transient functional connectivity is an important challenge in Electroencephalogram (EEG) research. Here, the rich potential for insightful, discriminative information of brain activity offered by high temporal resolution is confounded by the inherent noise of the medium and the spurious nature of correlations computed over short temporal windows. We propose a novel methodology to overcome these problems called Filter Average Short-Term (FAST) functional connectivity. First, long-term, stable, functional connectivity is averaged across an entire study cohort for a given pair of Visual Short Term Memory (VSTM) tasks. The resulting average connectivity matrix, containing information on the strongest general connections for the tasks, is used as a filter to analyse the transient high temporal resolution functional connectivity of individual subjects. In simulations, we show that this method accurately discriminates differences in noisy Event-Related Potentials (ERPs) between two conditions where standard connectivity and other comparable methods fail. We then apply this to analyse activity related to visual short-term memory binding deficits in two cohorts of familial and sporadic Alzheimer's disease. Reproducible significant differences were found in the binding task with no significant difference in the shape task in the P300 ERP range. This allows new sensitive measurements of transient functional connectivity, which can be implemented to obtain results of clinical significance.

18.
Psychol Med ; : 1-12, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38497116

RESUMEN

BACKGROUND: The brain can be represented as a network, with nodes as brain regions and edges as region-to-region connections. Nodes with the most connections (hubs) are central to efficient brain function. Current findings on structural differences in Major Depressive Disorder (MDD) identified using network approaches remain inconsistent, potentially due to small sample sizes. It is still uncertain at what level of the connectome hierarchy differences may exist, and whether they are concentrated in hubs, disrupting fundamental brain connectivity. METHODS: We utilized two large cohorts, UK Biobank (UKB, N = 5104) and Generation Scotland (GS, N = 725), to investigate MDD case-control differences in brain network properties. Network analysis was done across four hierarchical levels: (1) global, (2) tier (nodes grouped into four tiers based on degree) and rich club (between-hub connections), (3) nodal, and (4) connection. RESULTS: In UKB, reductions in network efficiency were observed in MDD cases globally (d = -0.076, pFDR = 0.033), across all tiers (d = -0.069 to -0.079, pFDR = 0.020), and in hubs (d = -0.080 to -0.113, pFDR = 0.013-0.035). No differences in rich club organization and region-to-region connections were identified. The effect sizes and direction for these associations were generally consistent in GS, albeit not significant in our lower-N replication sample. CONCLUSION: Our results suggest that the brain's fundamental rich club structure is similar in MDD cases and controls, but subtle topological differences exist across the brain. Consistent with recent large-scale neuroimaging findings, our findings offer a connectomic perspective on a similar scale and support the idea that minimal differences exist between MDD cases and controls.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...