Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Blood Cells Mol Dis ; 104: 102800, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37951090

RESUMEN

Red blood cells (RBC) from patients with sickle cell disease (SCD) have elevated calcium levels at baseline, which are further elevated upon deoxygenation. Here we examined baseline calcium levels and calcium flux in RBCs from a mouse model of SCD mice. We found that akin to humans with SCD, sickle (HbSS) Townes mice, have higher baseline levels and increased calcium flux in RBCs compared to control (HbAA) animals. As HbSS mice, unlike humans with SCD, have high mean corpuscular volume compared with HbAA, we highlight the importance of adjusting biochemical results to number of RBCs rather than hematocrit during the analysis and interpretation of the results. Our findings add to the face validity of humanized sickle cell mice and support its use for studies of RBC calcium flux in SCD.


Asunto(s)
Anemia de Células Falciformes , Índices de Eritrocitos , Humanos , Ratones , Animales , Calcio , Eritrocitos , Eritrocitos Anormales , Hemoglobina Falciforme/genética
3.
Toxicol Appl Pharmacol ; 473: 116606, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37336294

RESUMEN

The root cause of sickle cell disease (SCD) is the polymerization of sickle hemoglobin (HbS) leading to sickling of red blood cells (RBC). Earlier studies showed that in patients with SCD, high-dose nitrite inhibited sickling, an effect originally attributed to HbS oxidation to methemoglobin-S even though the anti-sickling effect did not correlate with methemoglobin-S levels. Here, we examined the effects of nitrite on HbS polymerization and on methemoglobin formation in a SCD mouse model. In vitro, at concentrations higher than physiologic (>1 µM), nitrite increased the delay time for polymerization of deoxygenated HbS independently of methemoglobin-S formation, which only occurred at much higher concentrations (>300 µM). In vitro, higher nitrite concentrations oxidized 100% of normal hemoglobin A (HbA), but only 70% of HbS. Dimethyl adipimidate, an anti-polymerization agent, increased the fraction of HbS oxidized by nitrite to 82%, suggesting that polymerized HbS partially contributed to the oxidation-resistant fraction of HbS. At low concentrations (10 µM-1 mM), nitrite did not increase the formation of reactive oxygen species but at high concentrations (10 mM) it decreased sickle RBC viability. In SCD mice, 4-week administration of nitrite yielded no significant changes in methemoglobin or nitrite levels in plasma and RBC, however, it further increased leukocytosis. Overall, these data suggest that nitrite at supra-physiologic concentrations has anti-polymerization properties in vitro and that leukocytosis is a potential nitrite toxicity in vivo. Therefore, to determine whether the anti-polymerization effect of nitrite observed in vitro underlies the decreases in sickling observed in patients with SCD, administration of higher nitrite doses is required.


Asunto(s)
Anemia de Células Falciformes , Hemoglobina Falciforme , Animales , Ratones , Metahemoglobina , Nitritos , Leucocitosis , Anemia de Células Falciformes/tratamiento farmacológico
4.
Biochem Biophys Res Commun ; 555: 196-201, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33831782

RESUMEN

The nucleotide-binding domain leucine-rich repeat containing protein 3 (NLRP3) inflammasome is a critical inflammatory mechanism identified in platelets, which controls platelet activation and aggregation. We have recently shown that the platelet NLRP3 inflammasome is upregulated in sickle cell disease (SCD), which is mediated by Bruton tyrosine kinase (BTK). Here, we investigated the effect of pharmacological inhibition of NLRP3 and BTK on platelet aggregation and the formation of in vitro thrombi in Townes SCD mice. Mice were injected for 4 weeks with the NLRP3 inhibitor MCC950, the BTK inhibitor ibrutinib or vehicle control. NLRP3 activity, as monitored by caspase-1 activation, was upregulated in platelets from SCD mice, which was dependent on BTK. Large areas of platelet aggregates detected in the liver of SCD mice were decreased when mice were treated with MCC950 or ibrutinib. Moreover, platelet aggregation and in vitro thrombus formation were upregulated in SCD mice and were inhibited when mice were subjected to pharmacological inhibition of NLRP3 and BTK. Targeting the NLRP3 inflammasome might be a novel approach for antiplatelet therapy in SCD.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Anemia de Células Falciformes/fisiopatología , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Agregación Plaquetaria/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Adenina/análogos & derivados , Adenina/farmacología , Agammaglobulinemia Tirosina Quinasa/metabolismo , Animales , Plaquetas/efectos de los fármacos , Plaquetas/patología , Modelos Animales de Enfermedad , Femenino , Furanos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Indenos , Inflamasomas , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones Transgénicos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piperidinas/farmacología , Agregación Plaquetaria/fisiología , Sulfonamidas , Sulfonas/farmacología , Trombosis/tratamiento farmacológico , Trombosis/etiología
5.
Blood Cells Mol Dis ; 86: 102493, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32927249

RESUMEN

Strokes are feared complications of sickle cell disease (SCD) and yield significant neurologic and neurocognitive deficits. However, even without detectable strokes, SCD patients have significant neurocognitive deficits in domains of learning and memory, processing speed and executive function. In these cases, mechanisms unrelated to major cerebrovascular abnormalities likely underlie these deficits. While oxidative stress and stress-related signaling pathways play a role in SCD pathophysiology, their role in cerebral injury remains unknown. We have shown that Townes and BERK SCD mice, while not having strokes, recapitulate neurocognitive deficits reported in humans. We hypothesized that cognitive deficits in SCD mice are associated with cerebral oxidative stress. We showed that SCD mice have increased levels of reactive oxygen species, protein carbonylation, and lipid peroxidation in hippocampus and cortex, thus suggesting increased cerebral oxidative stress. Further, cerebral oxidative stress was associated with caspase-3 activity alterations and vascular endothelial abnormalities, white matter changes, and disruption of the blood brain barrier, similar to those reported after ischemic/oxidative injury. Additionally, after repeated hypoxia/reoxygenation exposure, homozygous Townes had enhanced microglia activation. Our findings indicate that oxidative stress and stress-induced tissue damage is increased in susceptible brain regions, which may, in turn, contribute to neurocognitive deficits in SCD mice.


Asunto(s)
Anemia de Células Falciformes/patología , Células Endoteliales/patología , Estrés Oxidativo , Sustancia Blanca/patología , Anemia de Células Falciformes/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Cognición , Células Endoteliales/metabolismo , Femenino , Humanos , Masculino , Ratones , Sustancia Blanca/metabolismo
6.
Front Neurosci ; 14: 854, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32922260

RESUMEN

Alzheimer's disease (AD) is a neurocognitive disorder that impacts both the brain and behavior. Metal ions, including zinc (Zn), have been seen to play an important role in AD-related pathology. In this study, we show alterations in wheel-running behavior both early and late in disease progression in a novel dual Tg mouse model of AD. This mouse includes both amyloid and tau pathology through its cross with the J20 (hAPP) and P301L (Tau) parentage. Animals were given either lab water or water that had been supplemented with 10 ppm Zn. Wheel running was assessed through individually housing mice and measuring wheel-running activity in both the light and dark cycles. Dual Tg mice showed significantly less activity in the first part of the dark cycle than WT mice at both 3.5 and 7 months of age (p < 0.05). Dual Tg mice given Zn water showed less activity compared to dual Tg mice on lab water, tau mice on Zn water, or WT mice given either lab or Zn water (p < 0.05) at 7 months. Female mice in this study consistently showed higher activity compared to male mice in all groups whereas Zn led to reduced activity. Daily activity rhythm was altered in both the tau and dual Tg mice, and Zn impacted this alteration through effects on amyloid, tau, and through circadian pathways.

7.
Brain Res ; 1746: 146968, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32533970

RESUMEN

Patients with sickle cell disease (SCD) can develop strokes and as a result, present neurologic and neurocognitive deficits. However, recent studies show that even without detectable cerebral parenchymal abnormalities on imaging studies, SCD patients can have significant cognitive and motor dysfunction, which can present as early as during infancy. As the cerebellum plays a pivotal role in motor and non-motor functions including sensorimotor processing and learning, we examined cerebellar behavior in humanized SCD mice using the Erasmus ladder. Homozygous (sickling) mice had significant locomotor malperformance characterized by miscoordination and impaired locomotor gait/stepping pattern adaptability. Conversely, Townes homozygous mice had no overall deficits in motor learning, as they were able to associate a conditioning stimulus (high-pitch warning tone) with the presentation of an obstacle and learned to decrease steptimes thereby increasing speed to avoid it. While these animals had no cerebellar strokes, these locomotor and adaptive gait/stepping patterns deficits were associated with oxidative stress, as well as cerebellar vascular endothelial and white matter abnormalities and blood brain barrier disruption, suggestive of ischemic injury. Taken together, these observations suggest that motor and adaptive locomotor deficits in SCD mice mirror some of those described in SCD patients and that ischemic changes in white matter and vascular endothelium and oxidative stress are biologic correlates of those deficits. These findings point to the cerebellum as an area of the central nervous system that is vulnerable to vascular and white matter injury and support the use of SCD mice for studies of the underlying mechanisms of cerebellar dysfunction in SCD.


Asunto(s)
Anemia de Células Falciformes/fisiopatología , Cerebelo/fisiopatología , Locomoción/fisiología , Estrés Oxidativo/fisiología , Sustancia Blanca/fisiopatología , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/patología , Animales , Ataxia/etiología , Cerebelo/patología , Modelos Animales de Enfermedad , Humanos , Ratones , Sustancia Blanca/patología
8.
Nitric Oxide ; 94: 79-91, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31689491

RESUMEN

The hypothesis of decreased nitric oxide (NO) bioavailability in sickle cell disease (SCD) proposes that multiple factors leading to decreased NO production and increased consumption contributes to vaso-occlusion, pulmonary hypertension, and pain. The anion nitrite is central to NO physiology as it is an end product of NO metabolism and serves as a reservoir for NO formation. However, there is little data on nitrite levels in SCD patients and its relationship to pain phenotype. We measured nitrite in SCD subjects and examined its relationship to SCD pain. In SCD subjects, median whole blood, red blood cell and plasma nitrite levels were higher than in controls, and were not associated with pain burden. Similarly, Townes and BERK homozygous SCD mice had elevated blood nitrite. Additionally, in red blood cells and plasma from SCD subjects and in blood and kidney from Townes homozygous mice, levels of cyclic guanosine monophosphate (cGMP) were higher compared to controls. In vitro, hemoglobin concentration, rather than sickle hemoglobin, was responsible for nitrite metabolism rate. In vivo, inhibition of NO synthases and xanthine oxidoreductase decreased nitrite levels in homozygotes but not in control mice. Long-term nitrite treatment in SCD mice further elevated blood nitrite and cGMP, worsened anemia, decreased platelets, and did not change pain response. These data suggest that SCD in humans and animals is associated with increased nitrite/NO availability, which is unrelated to pain phenotype. These findings might explain why multiple clinical trials aimed at increasing NO availability in SCD patients failed to improve pain outcomes.


Asunto(s)
Anemia de Células Falciformes/sangre , GMP Cíclico/sangre , Modelos Animales de Enfermedad , Hipertensión Pulmonar/sangre , Nitritos/sangre , Dolor/sangre , Adulto , Anemia de Células Falciformes/metabolismo , Animales , Disponibilidad Biológica , GMP Cíclico/metabolismo , Humanos , Hipertensión Pulmonar/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nitritos/metabolismo , Dolor/metabolismo , Adulto Joven
9.
Front Aging Neurosci ; 10: 382, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30524268

RESUMEN

The brains of those with Alzheimer's disease have amyloid and tau pathology; thus, mice modeling AD should have both markers. In this study, we characterize offspring from the cross of the J20 (hAPP) and rTg4510 (htau) strains (referred to as dual Tg). Behavior was assessed at both 3.5 and 7 months, and biochemical differences were assessed at 8 months. Additionally, mice were placed on zinc (Zn) water or standard lab water in order to determine the role of this essential biometal. Behavioral measures examined cognition, emotion, and aspects of daily living. Transgenic mice (dual Tg and htau) showed significant deficits in spatial memory in the Barnes Maze at both 3.5 and 7 months compared to controls. At 7 months, dual Tg mice performed significantly worse than htau mice (p < 0.01). Open field and elevated zero maze (EZM) data indicated that dual Tg and htau mice displayed behavioral disinhibition compared to control mice at both 3.5 and 7 months (p < 0.001). Transgenic mice showed significant deficits in activities of daily living, including burrowing and nesting, at both 3.5 and 7 months compared to control mice (p < 0.01). Dual Tg mice built very poor nests, indicating that non-cognitive tasks are also impacted by AD. Overall, dual Tg mice demonstrated behavioral deficits earlier than those shown by the htau mice. In the brain, dual Tg mice had significantly less free Zn compared to control mice in both the dentate gyrus and the CA3 of the hippocampus (p < 0.01). Dual Tg mice had increased tangles and plaques in the hippocampus compared to htau mice and the dual Tg mice given Zn water displayed increased tangle pathology in the hippocampus compared to htau mice on Zn water (p < 0.05). The dual Tg mouse described here displays pathology reminiscent of the human AD condition and is impaired early on in both cognitive and non-cognitive behaviors. This new mouse model allows researchers to assess how both amyloid and tau in combination impact behavior and brain pathology.

10.
Physiol Behav ; 182: 137-142, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28958954

RESUMEN

Circadian rhythms are altered in several diseases associated with aging, one of which is Alzheimer's disease (AD). One example of a circadian rhythm is the rest-activity cycle, which can be measured in mice by monitoring their wheel-running. The present study sought to investigate differences in light phase/dark phase activity between a mouse model of late onset AD (APP/E4) and control (C57Bl6J) mice, in both the pre-plaque and post-plaques stages of the disease. To assess activity level, 24-h wheel running behavior was monitored at six months (pre-plaque) and twelve months (post-plaque) for a period of nine days. The following measures were analyzed: counts (wheel rotations) during the dark phase, counts during the light phase, hour of activity onset, and hour of activity offset. Key findings indicate that activity onset is delayed in APP/E4 mice at six and twelve months, and activity profiles for APP/E4 and C57Bl6J mice differ during the light and dark phase in such a way that APP/E4 mice run less in the early hours of the dark phase and more in the later hours of the dark phase compared to C57Bl6J mice. These findings imply that rest-activity cycle is altered in the pre-plaque stages of AD in APP/E4 mice, as they show impairments as early as six months of age.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Precursor de Proteína beta-Amiloide/genética , Apolipoproteína E4/genética , Ritmo Circadiano/genética , Carrera/fisiología , Factores de Edad , Animales , Modelos Animales de Enfermedad , Femenino , Genotipo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Estadísticas no Paramétricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA