Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Diagn Microbiol Infect Dis ; 108(1): 116106, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37931386

RESUMEN

Efforts are underway globally to develop effective vaccines and drugs against M. tuberculosis (Mtb) to reduce the morbidity and mortality of tuberculosis. Improving detection of slow-growing mycobacteria could simplify and accelerate efficacy studies of vaccines and drugs in animal models and human clinical trials. Here, a real-time reverse transcription PCR (RT-PCR) assay was developed to detect pre-ribosomal RNA (pre-rRNA) of Mycobacterium bovis bacille Calmette-Guérin (BCG) and Mtb. This pre-rRNA biomarker is indicative of bacterial viability. In two different mouse models, the presence of pre-rRNA from BCG and Mtb in ex vivo tissues showed excellent agreement with slower culture-based colony-forming unit assays. The addition of a brief nutritional stimulation prior to molecular viability testing further differentiated viable but dormant mycobacteria from dead mycobacteria. This research has set the stage to evaluate pre-rRNA as a BCG and/or Mtb infection biomarker in future drug and vaccine clinical studies.


Asunto(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis , Animales , Ratones , Humanos , Mycobacterium bovis/genética , Mycobacterium tuberculosis/genética , Vacuna BCG , Precursores del ARN , Tuberculosis/diagnóstico , Tuberculosis/prevención & control , Desarrollo de Vacunas , Biomarcadores
2.
PLoS One ; 18(11): e0293422, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37917606

RESUMEN

Delineating functionally normal variants from functionally abnormal variants in tumor suppressor proteins is critical for cancer surveillance, prognosis, and treatment options. BRCA1 is a protein that has many variants of uncertain significance which are not yet classified as functionally normal or abnormal. In vitro functional assays can be used to identify the functional impact of a variant when the variant has not yet been categorized through clinical observation. Here we employ a homology-directed repair (HDR) reporter assay to evaluate over 300 missense and nonsense BRCA1 variants between amino acid residues 1280 and 1576, which encompasses the coiled-coil and serine cluster domains. Functionally abnormal variants tended to cluster in residues known to interact with PALB2, which is critical for homology-directed repair. Multiplexed results were confirmed by singleton assay and by ClinVar database variant interpretations. Comparison of multiplexed results to designated benign or likely benign or pathogenic or likely pathogenic variants in the ClinVar database yielded 100% specificity and 100% sensitivity of the multiplexed assay. Clinicians can reference the results of this functional assay for help in guiding cancer treatment and surveillance options. These results are the first to evaluate this domain of BRCA1 using a multiplexed approach and indicate the importance of this domain in the DNA repair process.


Asunto(s)
Mutación Missense , Serina , Humanos , Serina/genética , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas Supresoras de Tumor/genética , Reparación del ADN/genética , Reparación del ADN por Recombinación , Predisposición Genética a la Enfermedad
3.
PLoS Genet ; 19(8): e1010739, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37578980

RESUMEN

Single nucleotide variants are the most frequent type of sequence changes detected in the genome and these are frequently variants of uncertain significance (VUS). VUS are changes in DNA for which disease risk association is unknown. Thus, methods that classify the functional impact of a VUS can be used as evidence for variant interpretation. In the case of the breast and ovarian cancer specific tumor suppressor protein, BRCA1, pathogenic missense variants frequently score as loss of function in an assay for homology-directed repair (HDR) of DNA double-strand breaks. We previously published functional results using a multiplexed assay for 1056 amino acid substitutions residues 2-192 in the amino terminus of BRCA1. In this study, we have re-assessed the data from this multiplexed assay using an improved analysis pipeline. These new analysis methods yield functional scores for more variants in the first 192 amino acids of BRCA1, plus we report new results for BRCA1 amino acid residues 193-302. We now present the functional classification of 2172 BRCA1 variants in BRCA1 residues 2-302 using the multiplexed HDR assay. Comparison of the functional determinations of the missense variants with clinically known benign or pathogenic variants indicated 93% sensitivity and 100% specificity for this assay. The results from BRCA1 variants tested in this assay are a resource for clinical geneticists for evidence to evaluate VUS in BRCA1.


Asunto(s)
Proteína BRCA1 , Reparación del ADN por Recombinación , Femenino , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias de la Mama/genética , ADN , Roturas del ADN de Doble Cadena , Predisposición Genética a la Enfermedad , Mutación Missense , Neoplasias Ováricas/genética , Proteínas Supresoras de Tumor/genética
4.
bioRxiv ; 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37090572

RESUMEN

Single nucleotide variants are the most frequent type of sequence changes detected in the genome and these are frequently variants of uncertain significance (VUS). VUS are changes in DNA for which disease risk association is unknown. Thus, methods that classify the functional impact of a VUS can be used as evidence for variant interpretation. In the case of the breast and ovarian cancer specific tumor suppressor protein, BRCA1, pathogenic missense variants frequently score as loss of function in an assay for homology-directed repair (HDR) of DNA double-strand breaks. We previously published functional results using a multiplexed assay for 1056 amino acid substitutions residues 2-192 in the amino terminus of BRCA1. In this study, we have re-assessed the data from this multiplexed assay using an improved analysis pipeline. These new analysis methods yield functional scores for more variants in the first 192 amino acids of BRCA1, plus we report new results for BRCA1 amino acid residues 193-302. We now present the functional classification of 2172 BRCA1 variants in BRCA1 residues 2-302 using the multiplexed HDR assay. Comparison of the functional determinations of the missense variants with clinically known benign or pathogenic variants indicated 93% sensitivity and 100% specificity for this assay. The results from BRCA1 variants tested in this assay are a resource for clinical geneticists for evidence to evaluate VUS in BRCA1 . AUTHOR SUMMARY: Most missense substitutions in BRCA1 are variants of unknown significance (VUS), and individuals with a VUS in BRCA1 cannot know from genetic information alone whether this variant predisposes to breast or ovarian cancer. We apply a multiplexed functional assay for homology directed repair of DNA double strand breaks to assess variant impact on this important BRCA1 protein function. We analyzed 2172 variants in the amino-terminus of BRCA1 and demonstrate that variants that are known as pathogenic have a loss of function in the DNA repair assay. Conversely, variants that are known to be benign are functionally normal in the multiplexed assay. We suggest that these functional determinations of BRCA1 variants can be used to augment the information that clinical cancer geneticists provide to patients who have a VUS in BRCA1 .

5.
Am J Hum Genet ; 109(4): 618-630, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35196514

RESUMEN

Pathogenic variants in BRCA1 are associated with a greatly increased risk of hereditary breast and ovarian cancer (HBOC). With the increased availability and affordability of genetic testing, many individuals have been identified with BRCA1 variants of uncertain significance (VUSs), which are individually detected in the population too infrequently to ascertain a clinical risk. Functional assays can be used to experimentally assess the effects of these variants. In this study, we used multiplexed DNA repair assays of variants in the BRCA1 carboxyl terminus to functionally characterize 2,271 variants for homology-directed repair function (HDR) and 1,427 variants for cisplatin resistance (CR). We found a high level of consistent results (Pearson's r = 0.74) in the two multiplexed functional assays with non-functional variants located within regions of the BRCA1 protein necessary for its tumor suppression activity. In addition, functional categorizations of variants tested in the multiplex HDR and CR assays correlated with known clinical significance and with other functional assays for BRCA1 (Pearson's r = 0.53 to 0.71). The results of the multiplex HDR and CR assays are useful resources for characterizing large numbers of BRCA1 VUSs.


Asunto(s)
Proteína BRCA1 , Neoplasias de la Mama , Roturas del ADN de Doble Cadena , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias de la Mama/genética , ADN , Reparación del ADN , Femenino , Humanos , Mutación Missense
6.
Clin Chem ; 68(1): 143-152, 2021 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-34286830

RESUMEN

BACKGROUND: The urgent need for massively scaled clinical testing for SARS-CoV-2, along with global shortages of critical reagents and supplies, has necessitated development of streamlined laboratory testing protocols. Conventional nucleic acid testing for SARS-CoV-2 involves collection of a clinical specimen with a nasopharyngeal swab in transport medium, nucleic acid extraction, and quantitative reverse-transcription PCR (RT-qPCR). As testing has scaled across the world, the global supply chain has buckled, rendering testing reagents and materials scarce. To address shortages, we developed SwabExpress, an end-to-end protocol developed to employ mass produced anterior nares swabs and bypass the requirement for transport media and nucleic acid extraction. METHODS: We evaluated anterior nares swabs, transported dry and eluted in low-TE buffer as a direct-to-RT-qPCR alternative to extraction-dependent viral transport media. We validated our protocol of using heat treatment for viral inactivation and added a proteinase K digestion step to reduce amplification interference. We tested this protocol across archived and prospectively collected swab specimens to fine-tune test performance. RESULTS: After optimization, SwabExpress has a low limit of detection at 2-4 molecules/µL, 100% sensitivity, and 99.4% specificity when compared side by side with a traditional RT-qPCR protocol employing extraction. On real-world specimens, SwabExpress outperforms an automated extraction system while simultaneously reducing cost and hands-on time. CONCLUSION: SwabExpress is a simplified workflow that facilitates scaled testing for COVID-19 without sacrificing test performance. It may serve as a template for the simplification of PCR-based clinical laboratory tests, particularly in times of critical shortages during pandemics.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19 , COVID-19/diagnóstico , Técnicas de Laboratorio Clínico , Humanos , ARN Viral/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2/aislamiento & purificación , Sensibilidad y Especificidad , Manejo de Especímenes
7.
bioRxiv ; 2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32511368

RESUMEN

BACKGROUND: The urgent need for massively scaled clinical testing for SARS-CoV-2, along with global shortages of critical reagents and supplies, has necessitated development of streamlined laboratory testing protocols. Conventional nucleic acid testing for SARS-CoV-2 involves collection of a clinical specimen with a nasopharyngeal swab in transport medium, nucleic acid extraction, and quantitative reverse transcription PCR (RT-qPCR) (1). As testing has scaled across the world, the global supply chain has buckled, rendering testing reagents and materials scarce (2). To address shortages, we developed SwabExpress, an end-to-end protocol developed to employ mass produced anterior nares swabs and bypass the requirement for transport media and nucleic acid extraction. METHODS: We evaluated anterior nares swabs, transported dry and eluted in low-TE buffer as a direct-to-RT-qPCR alternative to extraction-dependent viral transport media. We validated our protocol of using heat treatment for viral activation and added a proteinase K digestion step to reduce amplification interference. We tested this protocol across archived and prospectively collected swab specimens to fine-tune test performance. RESULTS: After optimization, SwabExpress has a low limit of detection at 2-4 molecules/uL, 100% sensitivity, and 99.4% specificity when compared side-by-side with a traditional RT-qPCR protocol employing extraction. On real-world specimens, SwabExpress outperforms an automated extraction system while simultaneously reducing cost and hands-on time. CONCLUSION: SwabExpress is a simplified workflow that facilitates scaled testing for COVID-19 without sacrificing test performance. It may serve as a template for the simplification of PCR-based clinical laboratory tests, particularly in times of critical shortages during pandemics.

8.
Am J Trop Med Hyg ; 100(6): 1466-1476, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31017084

RESUMEN

18S rRNA is a biomarker that provides an alternative to thick blood smears in controlled human malaria infection (CHMI) trials. We reviewed data from CHMI trials at non-endemic sites that used blood smears and Plasmodium 18S rRNA/rDNA biomarker nucleic acid tests (NATs) for time to positivity. We validated a multiplex quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for Plasmodium 18S rRNA, prospectively compared blood smears and qRT-PCR for three trials, and modeled treatment effects at different biomarker-defined parasite densities to assess the impact on infection detection, symptom reduction, and measured intervention efficacy. Literature review demonstrated accelerated NAT-based infection detection compared with blood smears (mean acceleration: 3.2-3.6 days). For prospectively tested trials, the validated Plasmodium 18S rRNA qRT-PCR positivity was earlier (7.6 days; 95% CI: 7.1-8.1 days) than blood smears (11.0 days; 95% CI: 10.3-11.8 days) and significantly preceded the onset of grade 2 malaria-related symptoms (12.2 days; 95% CI: 10.6-13.3 days). Discrepant analysis showed that the risk of a blood smear-positive, biomarker-negative result was negligible. Data modeling predicted that treatment triggered by specific biomarker-defined thresholds can differentiate complete, partial, and non-protective outcomes and eliminate many grade 2 and most grade 3 malaria-related symptoms post-CHMI. Plasmodium 18S rRNA is a sensitive and specific biomarker that can justifiably replace blood smears for infection detection in CHMI trials in non-endemic settings. This study led to biomarker qualification through the U.S. Food and Drug Administration for use in CHMI studies at non-endemic sites, which will facilitate biomarker use for the qualified context of use in drug and vaccine trials.


Asunto(s)
Malaria/diagnóstico , Plasmodium/genética , ARN Protozoario/genética , ARN Ribosómico 18S/sangre , Biomarcadores/sangre , Humanos , Reacción en Cadena de la Polimerasa Multiplex , Plasmodium/aislamiento & purificación , ARN Ribosómico 18S/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
Am J Trop Med Hyg ; 100(5): 1202-1203, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30915959

RESUMEN

Low-density malaria infections are a source of human morbidity in endemic settings and potentially contribute to ongoing malaria transmission. Conventional rapid diagnostic tests (RDTs) were designed to detect clinically relevant parasite and antigen levels, but it is largely unknown what proportion of parasite (and antigen positive) infections are missed by conventional RDTs. Furthermore, RDTs can also provide false positives from lingering histidine-rich protein 2 (HRP2) antigenemia from a past infection. We analyzed 207 samples from Angolan outpatients with a bead-based HRP2 antigen assay and by qRT-PCR for the presence of parasite nucleic acids. Among patients HRP2 positive but negative by conventional RDT, the rate of quantitative reverse transcription-PCR (qRT-PCR) positivity was 45% (95% CI: 35-56%), with a median parasitemia of 3.4 parasites/µL (interquartile range: 0.14-4.8). Only 15% (7-26%) of HRP2-negative samples were found to have parasite nucleic acids. A substantial proportion of persons with blood HRP2 antigen concentrations not detected by the conventional RDT were found to have evidence of active infection, but at low parasite density levels.


Asunto(s)
Antígenos de Protozoos/análisis , Pruebas Diagnósticas de Rutina/estadística & datos numéricos , Malaria Falciparum/diagnóstico , Plasmodium falciparum/aislamiento & purificación , Proteínas Protozoarias/análisis , Humanos , Parasitemia/diagnóstico , Plasmodium falciparum/genética , Sensibilidad y Especificidad
10.
J Infect Dis ; 219(3): 437-447, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30202972

RESUMEN

Background: Detection of Plasmodium antigens provides evidence of malaria infection status and is the basis for most malaria diagnosis. Methods: We developed a sensitive bead-based multiplex assay for laboratory use, which simultaneously detects pan-Plasmodium aldolase (pAldo), pan-Plasmodium lactate dehydrogenase (pLDH), and P. falciparum histidine-rich protein 2 (PfHRP2) antigens. The assay was validated against purified recombinant antigens, monospecies malaria infections, and noninfected blood samples. To test against samples collected in an endemic setting, Angolan outpatient samples (n = 1267) were assayed. Results: Of 466 Angolan samples positive for at least 1 antigen, the most common antigen profiles were PfHRP2+/pAldo+/pLDH+ (167, 36%), PfHRP2+/pAldo-/pLDH- (163, 35%), and PfHRP2+/pAldo+/pLDH- (129, 28%). Antigen profile was predictive of polymerase chain reaction (PCR) positivity and parasite density. Eight Angolan samples (1.7%) had no or very low PfHRP2 but were positive for 1 or both of the other antigens. PCR analysis confirmed 3 (0.6%) were P. ovale infections and 2 (0.4%) represented P. falciparum parasites lacking Pfhrp2 and/or Pfhrp3. Conclusions: These are the first reports of Pfhrp2/3 deletion mutants in Angola. High-throughput multiplex antigen detection can inexpensively screen for low-density P. falciparum, non-falciparum, and Pfhrp2/3-deleted parasites to provide population-level antigen estimates and identify specimens requiring further molecular characterization.


Asunto(s)
Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Pruebas Inmunológicas , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Adolescente , Adulto , Angola , Antígenos de Protozoos/sangre , Niño , Preescolar , Fructosa-Bifosfato Aldolasa/inmunología , Eliminación de Gen , Humanos , Lactante , L-Lactato Deshidrogenasa/inmunología , Malaria Falciparum/diagnóstico , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Proteínas Protozoarias/sangre , Proteínas Recombinantes , Adulto Joven
11.
Malar J ; 17(1): 275, 2018 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-30053881

RESUMEN

BACKGROUND: Plasmodium 18S rRNA is a biomarker used to monitor blood-stage infections in malaria clinical trials. Plasmodium sporozoites also express this biomarker, and there is conflicting evidence about how long sporozoite-derived 18S rRNA persists in peripheral blood. If present in blood for an extended timeframe, sporozoite-derived 18S rRNA could complicate use as a blood-stage biomarker. METHODS: Blood samples from Plasmodium yoelii infected mice were tested for Plasmodium 18S rRNA and their coding genes (rDNA) using sensitive quantitative reverse transcription PCR and quantitative PCR assays, respectively. Blood and tissues from Plasmodium falciparum sporozoite (PfSPZ)-infected rhesus macaques were similarly tested. RESULTS: In mice, when P. yoelii sporozoite inoculation and blood collection were performed at the same site (tail vein), low level rDNA positivity persisted for 2 days post-infection. Compared to intact parasites with high rRNA-to-rDNA ratios, this low level positivity was accompanied by no increase in rRNA-to-rDNA, indicating detection of residual, non-viable parasite rDNA. When P. yoelii sporozoites were administered via the retro-orbital vein and blood sampled by cardiac puncture, neither P. yoelii 18S rRNA nor rDNA were detected 24 h post-infection. Similarly, there was no P. falciparum 18S rRNA detected in blood of rhesus macaques 3 days after intravenous injection with extremely high doses of PfSPZ. Plasmodium 18S rRNA in the rhesus livers increased by approximately 101-fold from 3 to 6 days post infection, indicating liver-stage proliferation. CONCLUSIONS: Beyond the first few hours after injection, sporozoite-derived Plasmodium 18S rRNA was not detected in peripheral blood. Diagnostics based on 18S rRNA are unlikely to be confounded by sporozoite inocula in human clinical trials.


Asunto(s)
Plasmodium yoelii/fisiología , ARN Protozoario/análisis , ARN Ribosómico 18S/análisis , Administración Intravenosa , Animales , Femenino , Macaca mulatta , Ratones , Ratones Endogámicos BALB C , Esporozoítos/química
12.
Clin Chem ; 64(6): 950-958, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29632127

RESUMEN

BACKGROUND: Microsatellite instability (MSI) is an emerging actionable phenotype in oncology that informs tumor response to immune checkpoint pathway immunotherapy. However, there remains a need for MSI diagnostics that are low cost, highly accurate, and generalizable across cancer types. We developed a method for targeted high-throughput sequencing of numerous microsatellite loci with pan-cancer informativity for MSI using single-molecule molecular inversion probes (smMIPs). METHODS: We designed a smMIP panel targeting 111 loci highly informative for MSI across cancers. We developed an analytical framework taking advantage of smMIP-mediated error correction to specifically and sensitively detect instability events without the need for typing matched normal material. RESULTS: Using synthetic DNA mixtures, smMIPs were sensitive to at least 1% MSI-positive cells and were highly consistent across replicates. The fraction of identified unstable microsatellites discriminated tumors exhibiting MSI from those lacking MSI with high accuracy across colorectal (100% diagnostic sensitivity and specificity), prostate (100% diagnostic sensitivity and specificity), and endometrial cancers (95.8% diagnostic sensitivity and 100% specificity). MSI-PCR, the current standard-of-care molecular diagnostic for MSI, proved equally robust for colorectal tumors but evidenced multiple false-negative results in prostate (81.8% diagnostic sensitivity and 100% specificity) and endometrial (75.0% diagnostic sensitivity and 100% specificity) tumors. CONCLUSIONS: smMIP capture provides an accurate, diagnostically sensitive, and economical means to diagnose MSI across cancer types without reliance on patient-matched normal material. The assay is readily scalable to large numbers of clinical samples, enables automated and quantitative analysis of microsatellite instability, and is readily standardized across clinical laboratories.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Inestabilidad de Microsatélites , Neoplasias/diagnóstico , Humanos , Límite de Detección , Técnicas de Diagnóstico Molecular , Neoplasias/genética , Reacción en Cadena de la Polimerasa/métodos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA