Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Res Microbiol ; 172(4-5): 103850, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34082027

RESUMEN

In Bacillus subtilis, motility genes are expressed in a hierarchical pattern - governed by the σD transcription factor and other proteins such as the EpsE molecular clutch and SlrA/SlrR regulator proteins. In contrast, motile species in the Bacillus cereus group seem to express their motility genes in a non-hierarchical pattern, and less is known about their regulation, also given that no orthologs to σD, EpsE, SlrA or SlrR are found in B. cereus group genomes. Here we show that deletion of cdgL (BTB_RS26690/BTB_c54300) in Bacillus thuringiensis 407 (cry-) resulted in a six-to ten-fold downregulation of the entire motility locus, and loss of flagellar structures and swimming motility. cdgL is unique to the B. cereus group and is found in all phylogenetic clusters in the population except for group I, which comprises isolates of non-motile Bacillus pseudomycoides. Analysis of RNA-Seq data revealed cdgL to be expressed in a three-gene operon with a NupC like nucleoside transporter, and a putative glycosyl transferase for which transposon-based gene inactivation was previously shown to produce a similar phenotype to cdgL deletion. Interestingly, all three proteins were predicted to be membrane-bound and may provide a concerted function in the regulation of B. cereus group motility.


Asunto(s)
Bacillus thuringiensis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Flagelina/biosíntesis , Flagelina/genética , Nucleótidos , Bacillus thuringiensis/enzimología , Flagelina/metabolismo , Regulación Bacteriana de la Expresión Génica , Movimiento , Filogenia
2.
Front Microbiol ; 11: 610650, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33424814

RESUMEN

Flagellar motility is considered an important virulence factor in different pathogenic bacteria. In Listeria monocytogenes the transcriptional repressor MogR regulates motility in a temperature-dependent manner, directly repressing flagellar- and chemotaxis genes. The only other bacteria known to carry a mogR homolog are members of the Bacillus cereus group, which includes motile species such as B. cereus and Bacillus thuringiensis as well as the non-motile species Bacillus anthracis, Bacillus mycoides and Bacillus pseudomycoides. Furthermore, the main motility locus in B. cereus group bacteria, carrying the genes for flagellar synthesis, appears to be more closely related to L. monocytogenes than to Bacillus subtilis, which belongs to a separate phylogenetic group of Bacilli and does not carry a mogR ortholog. Here, we show that in B. thuringiensis, MogR overexpression results in non-motile cells devoid of flagella. Global gene expression profiling showed that 110 genes were differentially regulated by MogR overexpression, including flagellar motility genes, but also genes associated with virulence, stress response and biofilm lifestyle. Accordingly, phenotypic assays showed that MogR also affects cytotoxicity and biofilm formation in B. thuringiensis. Overexpression of a MogR variant mutated in two amino acids within the putative DNA binding domain restored phenotypes to those of an empty vector control. In accordance, introduction of these mutations resulted in complete loss in MogR binding to its candidate flagellar locus target site in vitro. In contrast to L. monocytogenes, MogR appears to be regulated in a growth-phase dependent and temperature-independent manner in B. thuringiensis 407. Interestingly, mogR was found to be conserved also in non-motile B. cereus group species such as B. mycoides and B. pseudomycoides, which both carry major gene deletions in the flagellar motility locus and where in B. pseudomycoides mogR is the only gene retained. Furthermore, mogR is expressed in non-motile B. anthracis. Altogether this provides indications of an expanded set of functions for MogR in B. cereus group species, beyond motility regulation. In conclusion, MogR constitutes a novel B. thuringiensis pleiotropic transcriptional regulator, acting as a repressor of motility genes, and affecting the expression of a variety of additional genes involved in biofilm formation and virulence.

3.
Cell Surf ; 5: 100032, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32803021

RESUMEN

Cyclic diguanylate (c-di-GMP) signalling affects several cellular processes in Bacillus cereus group bacteria including biofilm formation and motility, and CdgF was previously identified as a diguanylate cyclase promoting biofilm formation in B. thuringiensis. C-di-GMP can exert its function as a second messenger via riboswitch binding, and a functional c-di-GMP-responsive riboswitch has been found upstream of cbpA in various B. cereus group strains. Protein signature recognition predicted CbpA to be a cell wall-anchored surface protein with a fibrinogen or collagen binding domain. The aim of this study was to identify the binding ligand of CbpA and the function of CbpA in cellular processes that are part of the B. cereus group c-di-GMP regulatory network. By global gene expression profiling cbpA was found to be down-regulated in a cdgF deletion mutant, and cbpA exhibited maximum expression in early exponential growth. Contrary to the wild type, a ΔcbpA deletion mutant showed no binding to collagen in a cell adhesion assay, while a CbpA overexpression strain exhibited slightly increased collagen binding compared to the control. For both fibrinogen and fibronectin there was however no change in binding activity compared to controls, and CbpA did not appear to contribute to binding to abiotic surfaces (polystyrene, glass, steel). Also, the CbpA overexpression strain appeared to be less motile and showed a decrease in biofilm formation compared to the control. This study provides the first experimental proof that the binding ligand of the c-di-GMP regulated adhesin CbpA is collagen.

4.
Mol Microbiol ; 101(3): 471-94, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27116468

RESUMEN

Biofilm formation can be considered a bacterial virulence mechanism. In a range of Gram-negatives, increased levels of the second messenger cyclic diguanylate (c-di-GMP) promotes biofilm formation and reduces motility. Other bacterial processes known to be regulated by c-di-GMP include cell division, differentiation and virulence. Among Gram-positive bacteria, where the function of c-di-GMP signalling is less well characterized, c-di-GMP was reported to regulate swarming motility in Bacillus subtilis while having very limited or no effect on biofilm formation. In contrast, we show that in the Bacillus cereus group c-di-GMP signalling is linked to biofilm formation, and to several other phenotypes important to the lifestyle of these bacteria. The Bacillus thuringiensis 407 genome encodes eleven predicted proteins containing domains (GGDEF/EAL) related to c-di-GMP synthesis or breakdown, ten of which are conserved through the majority of clades of the B. cereus group, including Bacillus anthracis. Several of the genes were shown to affect biofilm formation, motility, enterotoxin synthesis and/or sporulation. Among these, cdgF appeared to encode a master diguanylate cyclase essential for biofilm formation in an oxygenated environment. Only two cdg genes (cdgA, cdgJ) had orthologs in B. subtilis, highlighting differences in c-di-GMP signalling between B. subtilis and B. cereus group bacteria.


Asunto(s)
Bacillus cereus/fisiología , Biopelículas/crecimiento & desarrollo , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Bacillus cereus/genética , Bacillus cereus/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , GMP Cíclico/biosíntesis , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Eliminación de Gen , Liasas de Fósforo-Oxígeno/genética , Sistemas de Mensajero Secundario
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...