Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
NPJ Vaccines ; 7(1): 19, 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35149714

RESUMEN

Novel oral poliovirus vaccine type 2 (nOPV2) is being developed to reduce the rare occurrence of disease and outbreaks associated with the genetic instability of the Sabin vaccine strains. Children aged 1 to 5 years were enrolled in two related clinical studies to assess safety, immunogenicity, shedding rates and properties of the shed virus following vaccination with nOPV2 (two candidates) versus traditional Sabin OPV type 2 (mOPV2). The anticipated pattern of reversion and increased virulence was observed for shed Sabin-2 virus, as assessed using a mouse model of poliovirus neurovirulence. In contrast, there were significantly reduced odds of mouse paralysis for shed virus for both nOPV2 candidates when compared to shed Sabin-2 virus. Next-generation sequencing of shed viral genomes was consistent with and further supportive of the observed neurovirulence associated with shed Sabin-2 virus, as well as the reduced reversion to virulence of shed candidate viruses. While shed Sabin-2 showed anticipated A481G reversion in the primary attenuation site in domain V in the 5' untranslated region to be associated with increased mouse paralysis, the stabilized domain V in the candidate viruses did not show polymorphisms consistent with reversion to neurovirulence. The available data from a key target age group for outbreak response confirm the superior genetic and phenotypic stability of shed nOPV2 strains compared to shed Sabin-2 and suggest that nOPV2 should be associated with less paralytic disease and potentially a lower risk of seeding new outbreaks.

2.
Vaccine X ; 8: 100102, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34195600

RESUMEN

A novel, genetically-stabilized type 2 oral polio vaccine (nOPV2), developed to assist in the global polio eradication program, was recently the first-ever vaccine granted Emergency Use Listing by the WHO. Lot release tests for this vaccine included-for the first time to our knowledge-the assessment of genetic heterogeneity using next-generation sequencing (NGS). NGS ensures that the genetically-modified regions of the vaccine virus genome remain as designed and that levels of polymorphisms which may impact safety or efficacy are controlled during routine production. The variants present in nOPV2 lots were first assessed for temperature sensitivity and neurovirulence using molecular clones to inform which polymorphisms warranted formal evaluation during lot release. The novel use of NGS as a lot release test required formal validation of the method. Analysis of an nOPV2 lot spiked with the parental Sabin-2 strain enabled performance characteristics of the method to be assessed simultaneously at over 40 positions in the genome. These characteristics included repeatability and intermediate precision of polymorphism measurement, linearity of both spike-induced and nOPV2 lot-specific polymorphisms, and the limit-of-detection of spike-induced polymorphisms. The performance characteristics of the method met pre-defined criteria for 34 spike-induced polymorphic sites and 8 polymorphisms associated with the nOPV2 preparation; these sites collectively spanned most of the viral genome. Finally, the co-location of variants of interest on genomes was evaluated, with implications for the interpretation of NGS discussed.

3.
NPJ Vaccines ; 6(1): 94, 2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34326330

RESUMEN

Sabin-strain oral polio vaccines (OPV) can, in rare instances, cause disease in recipients and susceptible contacts or evolve to become circulating vaccine-derived strains with the potential to cause outbreaks. Two novel type 2 OPV (nOPV2) candidates were designed to stabilize the genome against the rapid reversion that is observed following vaccination with Sabin OPV type 2 (mOPV2). Next-generation sequencing and a modified transgenic mouse neurovirulence test were applied to shed nOPV2 viruses from phase 1 and 2 studies and shed mOPV2 from a phase 4 study. The shed mOPV2 rapidly reverted in the primary attenuation site (domain V) and increased in virulence. In contrast, the shed nOPV2 viruses showed no evidence of reversion in domain V and limited or no increase in neurovirulence in mice. Based on these results and prior published data on safety, immunogenicity, and shedding, the nOPV2 viruses are promising alternatives to mOPV2 for outbreak responses.

4.
PLoS One ; 15(2): e0229326, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32078666

RESUMEN

As high-throughput sequencing technologies are becoming more widely adopted for analysing pathogens in disease outbreaks there needs to be assurance that the different sequencing technologies and approaches to data analysis will yield reliable and comparable results. Conversely, understanding where agreement cannot be achieved provides insight into the limitations of these approaches and also allows efforts to be focused on areas of the process that need improvement. This manuscript describes the next-generation sequencing of three closely related viruses, each analysed using different sequencing strategies, sequencing instruments and data processing pipelines. In order to determine the comparability of consensus sequences and minority (sub-consensus) single nucleotide variant (mSNV) identification, the biological samples, the sequence data from 3 sequencing platforms and the *.bam quality-trimmed alignment files of raw data of 3 influenza A/H5N8 viruses were shared. This analysis demonstrated that variation in the final result could be attributed to all stages in the process, but the most critical were the well-known homopolymer errors introduced by 454 sequencing, and the alignment processes in the different data processing pipelines which affected the consistency of mSNV detection. However, homopolymer errors aside, there was generally a good agreement between consensus sequences that were obtained for all combinations of sequencing platforms and data processing pipelines. Nevertheless, minority variant analysis will need a different level of careful standardization and awareness about the possible limitations, as shown in this study.


Asunto(s)
Brotes de Enfermedades/veterinaria , Patos/virología , Subtipo H5N8 del Virus de la Influenza A/clasificación , Subtipo H5N8 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/veterinaria , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma/métodos , Animales , Genoma Viral , Infecciones por Orthomyxoviridae/virología , ARN Viral/análisis , ARN Viral/genética , Análisis de Secuencia de ADN
5.
Am J Trop Med Hyg ; 102(2): 451-457, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31837130

RESUMEN

Nontraumatic myelopathy causes severe morbidity and is not uncommon in Africa. Clinically, patients often present with paraplegia, and extrinsic cord compression and transverse myelitis are most common causes. Data on exact pathogenesis are scanty because of limitations in diagnostic methods. In Queen Elizabeth Central Hospital, Blantyre, Malawi, we recorded consecutive patients presenting with nontraumatic paraplegia for maximally 6 months between January and July 2010 and from March to December 2011. The diagnostic workup included imaging and examining blood, stool, urine, sputum, and cerebrospinal fluid (CSF) samples for infection. After discharge, additional diagnostic tests, including screening for virus infections, borreliosis, syphilis, and schistosomiasis, were carried out in the Netherlands. The clinical diagnosis was, thus, revised in retrospect with a more accurate final differential diagnosis. Of 58 patients included, the mean age was 41 years (range, 12-83 years) and the median time between onset and presentation was 18 days (range, 0-121 days), and of 55 patients tested, 23 (42%) were HIV positive. Spinal tuberculosis (n = 24, 41%), tumors (n = 16, 28%), and transverse myelitis (n = 6, 10%) were most common; in six cases (10%), no diagnosis could be made. The additional tests yielded evidence for CSF infection with Schistosoma, Treponema pallidum, Epstein-Barr virus (EBV), HHV-6, HIV, as well as a novel cyclovirus. The diagnosis of the cause of paraplegia is complex and requires access to an magnetic resonance imaging (MRI) scan and other diagnostic (molecular) tools to demonstrate infection. The major challenge is to confirm the role of detected pathogens in the pathophysiology and to design an effective and affordable diagnostic approach.


Asunto(s)
Infecciones por VIH/complicaciones , Infecciones por VIH/epidemiología , Enfermedades de la Médula Espinal/epidemiología , Enfermedades de la Médula Espinal/etiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Femenino , Anticuerpos Anti-VIH/sangre , Humanos , Malaui/epidemiología , Masculino , Persona de Mediana Edad , Prevalencia , Estudios Prospectivos , Adulto Joven
6.
Sci Rep ; 9(1): 18892, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31827222

RESUMEN

Chronic infection with Hepatitis B virus (HBV) is a major risk factor for the development of advanced liver disease including fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The relative contribution of virological factors to disease progression has not been fully defined and tools aiding the deconvolution of complex patient virus profiles is an unmet clinical need. Variable viral mutant signatures develop within individual patients due to the low-fidelity replication of the viral polymerase creating 'quasispecies' populations. Here we present the first comprehensive survey of the diversity of HBV quasispecies through ultra-deep sequencing of the complete HBV genome across two distinct European and Asian patient populations. Seroconversion to the HBV e antigen (HBeAg) represents a critical clinical waymark in infected individuals. Using a machine learning approach, a model was developed to determine the viral variants that accurately classify HBeAg status. Serial surveys of patient quasispecies populations and advanced analytics will facilitate clinical decision support for chronic HBV infection and direct therapeutic strategies through improved patient stratification.


Asunto(s)
ADN Viral , Variación Genética , Genoma Viral , Virus de la Hepatitis B/genética , Hepatitis B Crónica/virología , Aprendizaje Automático , Carcinoma Hepatocelular/virología , Progresión de la Enfermedad , Femenino , Humanos , Neoplasias Hepáticas/virología , Masculino , Cuasiespecies
7.
PLoS One ; 13(7): e0200849, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30024940

RESUMEN

Influenza viruses can cause severe life threatening infections in high-risk patients, including young children, the elderly and patients with compromised immunity due to underlying medical conditions or immunosuppressive treatment. The impaired immunity of these patients causes prolonged virus infection and combined with antiviral treatment facilitates the emergence of viruses with resistance mutations. The diverse nature of their immune status makes them a challenging group to study the impact of influenza virus infection and the efficacy of antiviral therapy. Immunocompromised ferrets may represent a suitable animal model to assess influenza virus infection and antiviral treatment strategies in immunocompromised hosts. Here, ferrets were given a daily oral solution of mycophenolate mofetil, tacrolimus and prednisolone sodium phosphate to suppress their immune system. Groups of immunocompromised and immunocompetent ferrets were inoculated with an A/H3N2 influenza virus and were subsequently treated with Oseltamivir or left untreated. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) was performed on the throat and nose specimens to study virus replication during the course of infection. All immunocompromised ferrets had prolonged presence of viral RNA and a higher total amount of virus shedding compared to the immunocompetent ferrets. Although Oseltamivir reduced the total amount of virus shedding from the nose and throat of treated ferrets, it also resulted in the emergence of the neuraminidase R292K resistance substitution in all these animals, as determined by mutation specific RT-PCR and next-generation sequencing. No additional mutations that could be associated with the emergence of the R292K resistance mutation were detected. The immunocompromised ferret model can be used to study A/H3N2 virus shedding and is a promising model to study new antiviral strategies and the emergence of antiviral resistance in immunocompromised hosts.


Asunto(s)
Antivirales/uso terapéutico , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Animales , Farmacorresistencia Viral/genética , Hurones , Huésped Inmunocomprometido , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
Viruses ; 10(1)2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29301313

RESUMEN

Human respiratory syncytial virus (HRSV) causes substantial morbidity and mortality in vulnerable patients, such as the very young, the elderly, and immunocompromised individuals of any age. Nosocomial transmission of HRSV remains a serious challenge in hospital settings, with intervention strategies largely limited to infection control measures, including isolation of cases, high standards of hand hygiene, cohort nursing, and use of personal protective equipment. No vaccines against HRSV are currently available, and treatment options are largely supportive care and expensive monoclonal antibody or antiviral therapy. The limitations of current animal models for HRSV infection impede the development of new preventive and therapeutic agents, and the assessment of their potential for limiting HRSV transmission, in particular in nosocomial settings. Here, we demonstrate the efficient transmission of HRSV from immunocompromised ferrets to both immunocompromised and immunocompetent contact ferrets, with pathological findings reproducing HRSV pathology in humans. The immunocompromised ferret-HRSV model represents a novel tool for the evaluation of intervention strategies against nosocomial transmission of HRSV.


Asunto(s)
Huésped Inmunocomprometido , Infecciones por Virus Sincitial Respiratorio/transmisión , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano , Animales , Línea Celular , Efecto Citopatogénico Viral , Modelos Animales de Enfermedad , Hurones , Humanos , Masculino , ARN Viral , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/patología , Mucosa Respiratoria/virología , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/inmunología , Carga Viral , Replicación Viral
10.
Sci Rep ; 7(1): 4688, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28680115

RESUMEN

Current standard-of-care treatment of chronically infected hepatitis C virus (HCV) patients involves direct-acting antivirals (DAA). However, concerns exist regarding the emergence of drug -resistant variants and subsequent treatment failure. In this study, we investigate potential natural drug-resistance mutations in the NS5B gene of HCV genotype 1b from treatment-naïve patients. Population-based sequencing and 454 deep sequencing of NS5B gene were performed on plasma and liver samples obtained from 18 treatment- naïve patients. The quasispecies distribution in plasma and liver samples showed a remarkable overlap in each patient. Although unique sequences in plasma or liver were observed, in the majority of cases the most dominant sequences were shown to be identical in both compartments. Neither in plasma nor in the liver codon changes were detected at position 282 that cause resistance to nucleos(t)ide analogues. However, in 10 patients the V321I change conferring resistance to nucleos(t)ide NS5B polymerase inhibitors and in 16 patients the C316N/Y/H non-nucleoside inhibitors were found mainly in liver samples. In conclusion, 454-deep sequencing of liver and plasma compartments in treatment naïve patients provides insight into viral quasispecies and the pre-existence of some drug-resistant variants in the liver, which are not necessarily present in plasma.


Asunto(s)
Farmacorresistencia Viral , Hepatitis C Crónica/genética , Hepatitis C/virología , Cuasiespecies , Proteínas no Estructurales Virales/genética , Antivirales/farmacología , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Hígado/virología , Plasma/virología , Análisis de Secuencia de ARN
11.
J Gen Virol ; 97(9): 2180-2186, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27283016

RESUMEN

Ferret coronaviruses (FRCoVs) exist as an enteric and a systemic pathotype, of which the latter is highly lethal to ferrets. To our knowledge, this study provides the first full genome sequence of a FRCoV, tentatively called FRCoV-NL-2010, which was detected in 2010 in ferrets in The Netherlands. Phylogenetic analysis showed that FRCoV-NL-2010 is most closely related to mink CoV, forming a separate clade of mustelid alphacoronavirus that split off early from other alphacoronaviruses. Based on sequence homology of the complete genome, we propose that these mustelid coronaviruses may be assigned to a new species. Comparison of FRCoV-NL-2010 with the partially sequenced ferret systemic coronavirus MSU-1 and ferret enteric coronavirus MSU-2 revealed that recombination in the spike, 3c and envelope genes occurred between different FRCoVs.


Asunto(s)
Infecciones por Coronavirus/veterinaria , Coronavirus/clasificación , Coronavirus/aislamiento & purificación , Hurones/virología , Genoma Viral , ARN Viral/genética , Recombinación Genética , Animales , Análisis por Conglomerados , Coronavirus/genética , Infecciones por Coronavirus/virología , Países Bajos , Filogenia , Análisis de Secuencia de ADN , Homología de Secuencia
12.
J Virol ; 90(9): 4269-4277, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26819311

RESUMEN

UNLABELLED: Influenza A viruses are major pathogens for humans, domestic animals, and wildlife, and these viruses occasionally cross the species barrier. In spring 2014, increased mortality of harbor seals (Phoca vitulina), associated with infection with an influenza A(H10N7) virus, was reported in Sweden and Denmark. Within a few months, this virus spread to seals of the coastal waters of Germany and the Netherlands, causing the death of thousands of animals. Genetic analysis of the hemagglutinin (HA) and neuraminidase (NA) genes of this seal influenza A(H10N7) virus revealed that it was most closely related to various avian influenza A(H10N7) viruses. The collection of samples from infected seals during the course of the outbreak provided a unique opportunity to follow the adaptation of the avian virus to its new seal host. Sequence data for samples collected from 41 different seals from four different countries between April 2014 and January 2015 were obtained by Sanger sequencing and next-generation sequencing to describe the molecular epidemiology of the seal influenza A(H10N7) virus. The majority of sequence variation occurred in the HA gene, and some mutations corresponded to amino acid changes not found in H10 viruses isolated from Eurasian birds. Also, sequence variation in the HA gene was greater at the beginning than at the end of the epidemic, when a number of the mutations observed earlier had been fixed. These results imply that when an avian influenza virus jumps the species barrier from birds to seals, amino acid changes in HA may occur rapidly and are important for virus adaptation to its new mammalian host. IMPORTANCE: Influenza A viruses are major pathogens for humans, domestic animals, and wildlife. In addition to the continuous circulation of influenza A viruses among various host species, cross-species transmission of influenza A viruses occurs occasionally. Wild waterfowl and shorebirds are the main reservoir for most influenza A virus subtypes, and spillover of influenza A viruses from birds to humans or other mammalian species may result in major outbreaks. In the present study, various sequencing methods were used to elucidate the genetic changes that occurred after the introduction and subsequent spread of an avian influenza A(H10N7) virus among harbor seals of northwestern Europe by use of various samples collected during the outbreak. Such detailed knowledge of genetic changes necessary for introduction and adaptation of avian influenza A viruses to mammalian hosts is important for a rapid risk assessment of such viruses soon after they cross the species barrier.


Asunto(s)
Variación Genética , Subtipo H10N7 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/virología , Phoca/virología , Análisis Espacio-Temporal , Sustitución de Aminoácidos , Animales , Biología Computacional/métodos , Europa (Continente)/epidemiología , Genoma Viral , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Subtipo H10N7 del Virus de la Influenza A/clasificación , Filogenia , Filogeografía
13.
J Med Virol ; 88(6): 1035-43, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26629781

RESUMEN

Although hepatitis B virus (HBV) infection is hyperendemic in Ethiopia and constitutes a major public health problem, little is known about its genetic diversity, genotypes, and circulation. The aim of this study was to determine the molecular epidemiology and genetic diversity of HBV in Ethiopia, using 391 serum samples collected from HBsAg-positive blood donors living in five different geographic regions. The HBV S/pol gene was amplified, sequenced, and HBV genotypes, subgenotypes, serotypes, and major hydrophilic region (MHR) variants were determined. Phylogenetic analysis of 371 samples (95%) revealed the distribution of genotypes A (78%) and D (22%) in Ethiopia. Further phylogenetic analysis identified one subgenotype (A1) within genotype A, and 4 subgenotypes within genotype D (D1; 1.3%, D2; 55%, D4; 2.5%, and D6; 8.8%). Importantly, 24 isolates (30%) of genotype D formed a novel phylogenetic cluster, distinct from any known D subgenotypes, and two A/D recombinants. Analysis of predicted amino-acid sequences within the HBsAg revealed four serotypes: adw2 (79%), ayw1 (3.1%), ayw2 (7.8%), and ayw3 (11.6%). Subsequent examination of sequences showed that 51 HBV isolates (14%) had mutations in the MHR and 8 isolates (2.2%) in the reverse transcriptase known to confer antiviral resistance. This study provides the first description of HBV genetic diversity in Ethiopia with a predominance of subgenotypes A1 and D2, and also identified HBV isolates that could represent a novel subgenotype. Furthermore, a significant prevalence of HBsAg variants in Ethiopian population is revealed.


Asunto(s)
Variación Genética , Virus de la Hepatitis B/genética , Hepatitis B Crónica/epidemiología , Hepatitis B Crónica/virología , Hepatitis B/epidemiología , Hepatitis B/virología , Adolescente , Adulto , Secuencia de Aminoácidos , Anticuerpos Antivirales/sangre , Secuencia de Bases , ADN Viral/sangre , Etiopía/epidemiología , Femenino , Genotipo , Antígenos de Superficie de la Hepatitis B/sangre , Antígenos de Superficie de la Hepatitis B/genética , Humanos , Masculino , Persona de Mediana Edad , Mutación , Filogenia , Prevalencia , Análisis de Secuencia de ADN , Serogrupo , Adulto Joven
15.
Science ; 351(6268): 77-81, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26678878

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) infections have led to an ongoing outbreak in humans, which was fueled by multiple zoonotic MERS-CoV introductions from dromedary camels. In addition to the implementation of hygiene measures to limit further camel-to-human and human-to-human transmissions, vaccine-mediated reduction of MERS-CoV spread from the animal reservoir may be envisaged. Here we show that a modified vaccinia virus Ankara (MVA) vaccine expressing the MERS-CoV spike protein confers mucosal immunity in dromedary camels. Compared with results for control animals, we observed a significant reduction of excreted infectious virus and viral RNA transcripts in vaccinated animals upon MERS-CoV challenge. Protection correlated with the presence of serum neutralizing antibodies to MERS-CoV. Induction of MVA-specific antibodies that cross-neutralize camelpox virus would also provide protection against camelpox.


Asunto(s)
Camelus/virología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Brotes de Enfermedades/prevención & control , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Glicoproteína de la Espiga del Coronavirus/inmunología , Virus Vaccinia/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Humanos , ARN Viral/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Virus Vaccinia/genética , Esparcimiento de Virus/inmunología
16.
Euro Surveill ; 20(40)2015.
Artículo en Inglés | MEDLINE | ID: mdl-26539753

RESUMEN

The Magazine Wharf area, Freetown, Sierra Leone was a focus of ongoing Ebola virus transmission from late June 2015. Viral genomes linked to this area contain a series of 13 T to C substitutions in a 150 base pair intergenic region downstream of viral protein 40 open reading frame, similar to the Ebolavirus/H.sapiens-wt/SLE/2014/Makona-J0169 strain (J0169) detected in the same town in November 2014. This suggests that recently circulating viruses from Freetown descend from a J0169-like virus.


Asunto(s)
Brotes de Enfermedades , Ebolavirus/genética , Fiebre Hemorrágica Ebola/epidemiología , Ebolavirus/aislamiento & purificación , Genoma Viral , Genotipo , Fiebre Hemorrágica Ebola/diagnóstico , Humanos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sierra Leona
17.
Front Microbiol ; 6: 1069, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26483782

RESUMEN

Infectious disease metagenomics is driven by the question: "what is causing the disease?" in contrast to classical metagenome studies which are guided by "what is out there?" In case of a novel virus, a first step to eventually establishing etiology can be to recover a full-length viral genome from a metagenomic sample. However, retrieval of a full-length genome of a divergent virus is technically challenging and can be time-consuming and costly. Here we discuss different assembly and fragment linkage strategies such as iterative assembly, motif searches, k-mer frequency profiling, coverage profile binning, and other strategies used to recover genomes of potential viral pathogens in a timely and cost-effective manner.

18.
Infect Ecol Epidemiol ; 5: 28305, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26183160

RESUMEN

Two of the earliest Middle East respiratory syndrome (MERS) cases were men who had visited the Doha central animal market and adjoining slaughterhouse in Qatar. We show that a high proportion of camels presenting for slaughter in Qatar show evidence for nasal MERS-CoV shedding (62/105). Sequence analysis showed the circulation of at least five different virus strains at these premises, suggesting that this location is a driver of MERS-CoV circulation and a high-risk area for human exposure. No correlation between RNA loads and levels of neutralizing antibodies was observed, suggesting limited immune protection and potential for reinfection despite previous exposure.

19.
Emerg Infect Dis ; 21(7): 1205-8, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26079061

RESUMEN

A fox circovirus was identified in serum samples from foxes with unexplained neurologic signs by using viral metagenomics. Fox circovirus nucleic acid was localized in histological lesions of the cerebrum by in situ hybridization. Viruses from the family Circoviridae may have neurologic tropism more commonly than previously anticipated.


Asunto(s)
Infecciones por Circoviridae/veterinaria , Circovirus/aislamiento & purificación , Zorros/virología , Meningoencefalitis/veterinaria , Animales , Encéfalo/patología , Encéfalo/virología , Infecciones por Circoviridae/diagnóstico , Infecciones por Circoviridae/virología , Circovirus/genética , Femenino , Masculino , Meningoencefalitis/diagnóstico , Meningoencefalitis/virología , Técnicas de Diagnóstico Molecular , Reacción en Cadena en Tiempo Real de la Polimerasa , Reino Unido
20.
J Virol ; 89(11): 6131-5, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25810539

RESUMEN

The ability of Middle East respiratory syndrome coronavirus (MERS-CoV) to infect small animal species may be restricted given the fact that mice, ferrets, and hamsters were shown to resist MERS-CoV infection. We inoculated rabbits with MERS-CoV. Although virus was detected in the lungs, neither significant histopathological changes nor clinical symptoms were observed. Infectious virus, however, was excreted from the upper respiratory tract, indicating a potential route of MERS-CoV transmission in some animal species.


Asunto(s)
Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Coronavirus del Síndrome Respiratorio de Oriente Medio/crecimiento & desarrollo , Animales , Enfermedades Asintomáticas , Cricetinae , Modelos Animales de Enfermedad , Femenino , Pulmón/patología , Pulmón/virología , Ratones , Coronavirus del Síndrome Respiratorio de Oriente Medio/aislamiento & purificación , Conejos , Sistema Respiratorio/virología , Esparcimiento de Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...