Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Cancer Sci ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39021298

RESUMEN

Gastric cancer (GC) is characterized by significant intratumoral heterogeneity, and stem cells are promising therapeutic targets. Despite advancements in spatial transcriptome analyses, unexplored targets for addressing cancer stemness remain unknown. This study aimed to identify Nuclear Factor IX (NFIX) as a critical regulator of cancer stemness in GC and evaluate its clinicopathological significance and function. Spatial transcriptome analysis of GC was conducted. The correlation between NFIX expression, clinicopathological factors, and prognosis was assessed using immunostaining in 127 GC cases. Functional analyses of cancer cell lines validated these findings. Spatial transcriptome analysis stratified GC tissues based on genetic profiles, identified CSC-like cells, and further refined the classification to identify and highlight the significance of NFIX, as validated by Monocle 3 and CytoTRACE analyses. Knockdown experiments in cancer cell lines have demonstrated the involvement of NFIX in cancer cell proliferation and kinase activity. This study underscores the role of spatial transcriptome analysis in refining GC tissue classification and identifying therapeutic targets, highlighting NFIX as a pivotal factor. NFIX expression is correlated with poor prognosis and drives GC progression, suggesting its potential as a novel therapeutic target for personalized GC therapies.

2.
Arch Intern Med Res ; 7(1): 42-52, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774576

RESUMEN

The Biden administration decided to end the COVID-19 National and Public Health emergencies on May 11, 2023. These emergency declarations were established by the Trump Administration in early 2020. Under the COVID-19 emergency declarations, US citizens were provided with COVID-19 testing, vaccines, and treatments at little or no cost. The declarations allowed the federal government the option of waiving and or modifying government programs such Medicare, Medicaid. The emergency declarations were directly tied to other COVID-19 related provisions that have also expired that includes Economic Security (CARES) Act, the American Rescue Plan Act (ARPA), the Families First Coronavirus Response Act (FFCRA), the Coronavirus Aid, Relief, and the Inflation Reduction Act (IRA), the Consolidated Appropriations Act, 2023 (CAA). In addition, there were other federal and state emergency programs that were provided and too numerous to report here. At the time of this writing, the state of Tennessee continues to have moderate and sporadic spikes in COVID-19 cases and hospitalizations. Tennessee has higher than the national average of uninsured and underinsured people in the US. In Tennessee, more than 600,000 people are uninsured or underinsured in 2023 according to a study by the Kaiser Family Foundation. The ending of the PHE greatly impact coverage, cost, and access to COVID related services that will disproportionately affect the uninsured and medically underserved populations in Tennessee, the south in general, and throughout the US. Medically underserved populations are those groups with disparities in primary care, living in poverty, older, or having higher than expected infant mortality.

5.
J Virol ; 98(2): e0177623, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38197630

RESUMEN

Epstein-Barr virus (EBV) has a lifelong latency period after initial infection. Rarely, however, when the EBV immediate early gene BZLF1 is expressed by a specific stimulus, the virus switches to the lytic cycle to produce progeny viruses. We found that EBV infection reduced levels of various ceramide species in gastric cancer cells. As ceramide is a bioactive lipid implicated in the infection of various viruses, we assessed the effect of ceramide on the EBV lytic cycle. Treatment with C6-ceramide (C6-Cer) induced an increase in the endogenous ceramide pool and increased production of the viral product as well as BZLF1 expression. Treatment with the ceramidase inhibitor ceranib-2 induced EBV lytic replication with an increase in the endogenous ceramide pool. The glucosylceramide synthase inhibitor Genz-123346 inhibited C6-Cer-induced lytic replication. C6-Cer induced extracellular signal-regulated kinase 1/2 (ERK1/2) and CREB phosphorylation, c-JUN expression, and accumulation of the autophagosome marker LC3B. Treatment with MEK1/2 inhibitor U0126, siERK1&2, or siCREB suppressed C6-Cer-induced EBV lytic replication and autophagy initiation. In contrast, siJUN transfection had no impact on BZLF1 expression. The use of 3-methyladenine (3-MA), an inhibitor targeting class III phosphoinositide 3-kinases (PI3Ks) to inhibit autophagy initiation, resulted in reduced beclin-1 expression, along with suppressed C6-Cer-induced BZLF1 expression and LC3B accumulation. Chloroquine, an inhibitor of autophagosome-lysosome fusion, increased BZLF1 protein intensity and LC3B accumulation. However, siLC3B transfection had minimal effect on BZLF1 expression. The results suggest the significance of ceramide-related sphingolipid metabolism in controlling EBV latency, highlighting the potential use of drugs targeting sphingolipid metabolism for treating EBV-positive gastric cancer.IMPORTANCEEpstein-Barr virus remains dormant in the host cell but occasionally switches to the lytic cycle when stimulated. However, the exact molecular mechanism of this lytic induction is not well understood. In this study, we demonstrate that Epstein-Barr virus infection leads to a reduction in ceramide levels. Additionally, the restoration of ceramide levels triggers lytic replication of Epstein-Barr virus with increase in phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and CREB. Our study suggests that the Epstein-Barr virus can inhibit lytic replication and remain latent through reduction of host cell ceramide levels. This study reports the regulation of lytic replication by ceramide in Epstein-Barr virus-positive gastric cancer.


Asunto(s)
Carcinoma , Ceramidas , Infecciones por Virus de Epstein-Barr , Neoplasias Gástricas , Humanos , Carcinoma/virología , Línea Celular Tumoral , Ceramidas/farmacología , Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/fisiología , Interacciones Huésped-Patógeno , Proteína Quinasa 3 Activada por Mitógenos , Neoplasias Gástricas/virología , Transactivadores/metabolismo , Activación Viral
6.
Nat Commun ; 15(1): 669, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253620

RESUMEN

The role of N6-methyladenosine (m6A) modification of host mRNA during bacterial infection is unclear. Here, we show that Helicobacter pylori infection upregulates host m6A methylases and increases m6A levels in gastric epithelial cells. Reducing m6A methylase activity via hemizygotic deletion of methylase-encoding gene Mettl3 in mice, or via small interfering RNAs targeting m6A methylases, enhances H. pylori colonization. We identify LOX-1 mRNA as a key m6A-regulated target during H. pylori infection. m6A modification destabilizes LOX-1 mRNA and reduces LOX-1 protein levels. LOX-1 acts as a membrane receptor for H. pylori catalase and contributes to bacterial adhesion. Pharmacological inhibition of LOX-1, or genetic ablation of Lox-1, reduces H. pylori colonization. Moreover, deletion of the bacterial catalase gene decreases adhesion of H. pylori to human gastric sections. Our results indicate that m6A modification of host LOX-1 mRNA contributes to protection against H. pylori infection by downregulating LOX-1 and thus reducing H. pylori adhesion.


Asunto(s)
Adenosina , Infecciones por Helicobacter , Helicobacter pylori , Receptores Depuradores de Clase E , Animales , Humanos , Ratones , Adenosina/análogos & derivados , Catalasa/metabolismo , Infecciones por Helicobacter/metabolismo , Helicobacter pylori/metabolismo , ARN Mensajero/genética , Receptores Depuradores de Clase E/genética
7.
Oncology ; 102(4): 354-365, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37812924

RESUMEN

INTRODUCTION: Gastric cancer (GC) remains a common health concern worldwide and is the third leading cause of death in Japan. It can be broadly classified into gastric and intestinal mucin phenotypes using immunohistochemistry. We previously reported numerous associations of kinesin family member (KIF) genes and mucin phenotypes with GC. However, no previous studies have reported on the importance of KIF18B in GC using immunostaining. Thus, in this study, we investigated the expression and functions of KIF18B, which is highly expressed in gastric mucin phenotype GC. METHODS: We performed RNA-seq of gastric and intestinal mucin type GCs, and clinicopathological studies of the KIF18B we found were performed using 96 GC cases. We also performed functional analysis using GC-derived cell lines. RESULT: RNA-seq showed the upregulation of matrisome-associated genes in gastric mucin phenotype GC and a high expression of KIF18B. KIF18B was detected in 52 of the 96 GC cases (54%) through immunohistochemistry. Low KIF18B expression was significantly associated with poor overall survival (p < 0.01). Other molecules that were significantly associated with KIF18B were MUC5AC and claudin 18; these were also significantly associated with the gastric mucin phenotype. KIF18B small interfering RNA (siRNA)-transfected GC cells showed greater growth and spheroid colony formation than the negative control siRNA-transfected cells. Furthermore, expression of snail family transcriptional repressor 1 and cadherin 2 was significantly increased and that of cadherin 1 was significantly decreased in KIF18B siRNA-transfected GC cells. CONCLUSION: These findings not only suggest that KIF18B may be a useful prognostic marker, but also provide insight into the pathogenesis of the GC phenotype.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patología , Cinesinas/genética , Cinesinas/metabolismo , Mucinas Gástricas/genética , Mucinas Gástricas/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , ARN Interferente Pequeño , Transición Epitelial-Mesenquimal/genética , Fenotipo , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral
8.
Cancer Cell ; 41(12): 2019-2037.e8, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-37890493

RESUMEN

Intestinal metaplasia (IM) is a pre-malignant condition of the gastric mucosa associated with increased gastric cancer (GC) risk. Analyzing 1,256 gastric samples (1,152 IMs) across 692 subjects from a prospective 10-year study, we identify 26 IM driver genes in diverse pathways including chromatin regulation (ARID1A) and intestinal homeostasis (SOX9). Single-cell and spatial profiles highlight changes in tissue ecology and IM lineage heterogeneity, including an intestinal stem-cell dominant cellular compartment linked to early malignancy. Expanded transcriptome profiling reveals expression-based molecular subtypes of IM associated with incomplete histology, antral/intestinal cell types, ARID1A mutations, inflammation, and microbial communities normally associated with the healthy oral tract. We demonstrate that combined clinical-genomic models outperform clinical-only models in predicting IMs likely to transform to GC. By highlighting strategies for accurately identifying IM patients at high GC risk and a role for microbial dysbiosis in IM progression, our results raise opportunities for GC precision prevention and interception.


Asunto(s)
Lesiones Precancerosas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Estudios Prospectivos , Mucosa Gástrica/patología , Genómica , Metaplasia/genética , Lesiones Precancerosas/genética
9.
NAR Cancer ; 5(3): zcad046, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37636315

RESUMEN

Constant communication between mitochondria and nucleus ensures cellular homeostasis and adaptation to mitochondrial stress. Anterograde regulatory pathways involving a large number of nuclear-encoded proteins control mitochondrial biogenesis and functions. Such functions are deregulated in cancer cells, resulting in proliferative advantages, aggressive disease and therapeutic resistance. Transcriptional networks controlling the nuclear-encoded mitochondrial genes are known, however alternative splicing (AS) regulation has not been implicated in this communication. Here, we show that IQGAP1, a scaffold protein regulating AS of distinct gene subsets in gastric cancer cells, participates in AS regulation that strongly affects mitochondrial respiration. Combined proteomic and RNA-seq analyses of IQGAP1KO and parental cells show that IQGAP1KO alters an AS event of the mitochondrial respiratory chain complex I (CI) subunit NDUFS4 and downregulates a subset of CI subunits. In IQGAP1KO cells, CI intermediates accumulate, resembling assembly deficiencies observed in patients with Leigh syndrome bearing NDUFS4 mutations. Mitochondrial CI activity is significantly lower in KO compared to parental cells, while exogenous expression of IQGAP1 reverses mitochondrial defects of IQGAP1KO cells. Our work sheds light to a novel facet of IQGAP1 in mitochondrial quality control that involves fine-tuning of CI activity through AS regulation in gastric cancer cells relying highly on mitochondrial respiration.

10.
Cureus ; 15(6): e39881, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37325692

RESUMEN

Esophageal cancer is a disease with high mortality. This is mainly due to late presentations with nonspecific symptoms. Despite advances in surgery and chemoradiotherapy, it is the eighth most common cancer but the sixth deadliest. It is reportedly common in older patients but rare in young ones. In this case report, we present a 29-year-old male patient with no prior medical condition who presented with hematemesis to the emergency unit and was found to have esophageal cancer with the biopsy. Not only is esophageal cancer rare in young adults, but hematemesis is a rare symptom in esophageal cancer patients.

11.
Vaccines (Basel) ; 11(6)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37376464

RESUMEN

COVID-19 vaccine hesitancy and uptake among Southern states in the US has been problematic throughout the pandemic. To characterize COVID-19 vaccine hesitancy and uptake among medically underserved communities in Tennessee. We surveyed 1482 individuals targeting minority communities in Tennessee from 2 October 2021 to 22 June 2022. Participants who indicated that they did not plan to receive or were unsure whether to receive the COVID-19 vaccine were considered vaccine-hesitant. Among participants, 79% had been vaccinated, with roughly 5.4% not likely at all to be vaccinated in the next three months from the date that the survey was conducted. When focusing particularly on Black/AA people and white people, our survey results revealed a significant association between race (Black/AA, white, or people of mixed Black/white ancestry) and vaccination status (vaccinated or unvaccinated) (p-value = 0.013). Approximately 79.1% of all participants received at least one dose of a COVID-19 vaccine. Individuals who were concerned with personal/family/community safety and/or wanted a return to normalcy were less likely to be hesitant. The study found that the major reasons cited for refusing the COVID-19 vaccines were distrust in vaccine safety, concerns about side effects, fear of needles, and vaccine efficacy.

12.
Vaccines (Basel) ; 11(5)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37243010

RESUMEN

The COVID-19 Omicron variant and its subvariants are now the dominant variants circulating in the US. Therefore, the original COVID-19 vaccine cannot offer full protection. Instead, vaccines that target the spike proteins of the Omicron variants are warranted. Hence, the FDA recommended the development of a bivalent booster. Unfortunately, despite the safety and immunogenicity of the Omicron bivalent boosters from Pfizer and Moderna, uptake in the US has been poor. At this time, only 15.8% of individuals in the US aged five and older have received the Omicron bivalent booster (OBB). The rate is 18% for those aged 18 and older. Poor vaccine confidence and booster uptake are often fueled by misinformation and vaccine fatigue. These result in more problems associated with vaccine hesitancy, which are particular prevalent in Southern states in the US. In Tennessee, the OBB vaccination rate for eligible recipients is only 5.88% at time of writing (16 February 2023). In this review, we discuss (1) the rationale for developing the OBBs; (2) the efficacy and safety of the bivalent boosters; (3) the adverse events associated with these boosters; (4) vaccine hesitancy associated with the OBBs uptake in Tennessee; (5) implications for vulnerable populations, disparities in uptake of OBBs in Tennessee, and strategies to improve vaccine confidence and OBB uptake. In support of public health, it is essential that we continue to provide education, awareness, and vaccine access to the vulnerable and medically underserved populations in Tennessee. Receiving the OBBs is the most effective method to date of protecting the public against severe COVID disease, hospitalization, and death.

13.
Gut ; 72(9): 1651-1663, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36918265

RESUMEN

OBJECTIVE: Gastric cancer (GC) is a leading cause of cancer mortality, with ARID1A being the second most frequently mutated driver gene in GC. We sought to decipher ARID1A-specific GC regulatory networks and examine therapeutic vulnerabilities arising from ARID1A loss. DESIGN: Genomic profiling of GC patients including a Singapore cohort (>200 patients) was performed to derive mutational signatures of ARID1A inactivation across molecular subtypes. Single-cell transcriptomic profiles of ARID1A-mutated GCs were analysed to examine tumour microenvironmental changes arising from ARID1A loss. Genome-wide ARID1A binding and chromatin profiles (H3K27ac, H3K4me3, H3K4me1, ATAC-seq) were generated to identify gastric-specific epigenetic landscapes regulated by ARID1A. Distinct cancer hallmarks of ARID1A-mutated GCs were converged at the genomic, single-cell and epigenomic level, and targeted by pharmacological inhibition. RESULTS: We observed prevalent ARID1A inactivation across GC molecular subtypes, with distinct mutational signatures and linked to a NFKB-driven proinflammatory tumour microenvironment. ARID1A-depletion caused loss of H3K27ac activation signals at ARID1A-occupied distal enhancers, but unexpectedly gain of H3K27ac at ARID1A-occupied promoters in genes such as NFKB1 and NFKB2. Promoter activation in ARID1A-mutated GCs was associated with enhanced gene expression, increased BRD4 binding, and reduced HDAC1 and CTCF occupancy. Combined targeting of promoter activation and tumour inflammation via bromodomain and NFKB inhibitors confirmed therapeutic synergy specific to ARID1A-genomic status. CONCLUSION: Our results suggest a therapeutic strategy for ARID1A-mutated GCs targeting both tumour-intrinsic (BRD4-assocatiated promoter activation) and extrinsic (NFKB immunomodulation) cancer phenotypes.


Asunto(s)
Neoplasias Gástricas , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Neoplasias Gástricas/patología , Proteínas Nucleares/genética , Epigenómica , Mutación , Microambiente Tumoral/genética , Proteínas de Unión al ADN/genética , Proteínas de Ciclo Celular/genética
15.
Vaccines (Basel) ; 10(12)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36560532

RESUMEN

The American College of Obstetricians and Gynecologists (AGOG) recommends the FDA-approved Pfizer and Moderna mRNA COVID-19 vaccines and boosters for all eligible pregnant women in the US. However, COVID-19 vaccine confidence and uptake among pregnant minority women have been poor. While the underlying reasons are unclear, they are likely to be associated with myths and misinformation about the vaccines. Direct and indirect factors that deter minority mothers in the US from receiving the mRNA COVID-19 vaccines require further investigation. Here, we examine the historical perspectives on vaccinations during pregnancy. We will examine the following aspects: (1) the influenza and tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis (Tdap) vaccinations during pregnancy; (2) the exclusion of pregnant and lactating women from COVID-19 vaccine trials; (3) COVID-19 vaccine safety during pregnancy, obstetric complications associated with symptomatic COVID-19 during pregnancy, COVID-19 vaccine hesitancy among pregnant minority women, and racial disparities experienced by pregnant minority women due to the COVID-19 pandemic as well as their potential impact on pregnancy care; and (4) strategies to improve COVID-19 vaccine confidence and uptake among pregnant minority women in the US. COVID-19 vaccine hesitancy among minority mothers can be mitigated by community engagement efforts that focus on COVID-19 vaccine education, awareness campaigns by trusted entities, and COVID-19-appropriate perinatal counseling aimed to improve COVID-19 vaccine confidence and uptake.

16.
Cell Death Dis ; 13(9): 827, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36167685

RESUMEN

Circular RNAs (circRNAs) have been reported to play essential roles in tumorigenesis and progression. This study aimed to identify dysregulated circRNAs in gastric cancer (GC) and investigate the functions and underlying mechanism of these circRNAs in GC development. Here, we identify circ_CEA, a circRNA derived from the back-splicing of CEA cell adhesion molecule 5 (CEA) gene, as a novel oncogenic driver of GC. Circ_CEA is significantly upregulated in GC tissues and cell lines. Circ_CEA knockdown suppresses GC progression, and enhances stress-induced apoptosis in vitro and in vivo. Mechanistically, circ_CEA interacts with p53 and cyclin-dependent kinases 1 (CDK1) proteins. It serves as a scaffold to enhance the association between p53 and CDK1. As a result, circ_CEA promotes CDK1-mediated p53 phosphorylation at Ser315, then decreases p53 nuclear retention and suppresses its activity, leading to the downregulation of p53 target genes associated with apoptosis. These findings suggest that circ_CEA protects GC cells from stress-induced apoptosis, via acting as a protein scaffold and interacting with p53 and CDK1 proteins. Combinational therapy of targeting circ_CEA and chemo-drug caused more cell apoptosis, decreased tumor volume and alleviated side effect induced by chemo-drug. Therefore, targeting circ_CEA might present a novel treatment strategy for GC.


Asunto(s)
MicroARNs , Neoplasias Gástricas , Apoptosis/genética , Antígeno Carcinoembrionario/genética , Antígeno Carcinoembrionario/metabolismo , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , ARN Circular/genética , Neoplasias Gástricas/patología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
17.
Cancer Lett ; 545: 215826, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35839920

RESUMEN

Circular RNAs (circRNAs) are covalently closed, endogenous molecules that are widespread in eukaryotes. Recent evidence indicates that circRNAs play important roles in carcinogenesis. Several circRNAs have been reported to comprise translatable RNA; however, whether circRNAs encode functional proteins remains unknown. In our study, circRNA sequencing was carried out using five pathologically diagnosed gastric carcinoma (GC) samples and their paired adjacent normal tissues, we characterized the circRNA GSPT1 (circGSPT1), which is expressed at low levels in GC. Antibody detections, and mass spectrometry were used to validate active circRNA translation. The spanning junction open reading frame in circGSPT1, driven by an internal ribosome entry site (IRES), encodes a functional peptide, termed GSPT1-238aa. Interestingly, GSPT1-238aa tends to select the start codon used to initiate translation. This is the first finding of selective translation driven by IRES. CircGSPT1 and GSPT1-238aa halted the proliferation, migration, and invasion in GC cells in vitro. We also confirmed that the vimentin/Beclin1/14-3-3 complex interacts with GSPT1-238aa and modulates autophagy via the PI3K/AKT/mTOR signaling pathway in GC cells. Our study reveals that GSPT1-238aa, a novel protein encoded by circGSPT1, halts GC tumorigenesis. We also provide insights into the function and underlying molecular mechanisms of GSPT1-238aa in GC and suggest that this protein represents a novel target for GC treatment.


Asunto(s)
Carcinoma , Neoplasias Gástricas , Autofagia/genética , Carcinogénesis/genética , Carcinoma/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Sitios Internos de Entrada al Ribosoma , Factores de Terminación de Péptidos , Fosfatidilinositol 3-Quinasas/genética , ARN Circular/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Proteínas Supresoras de Tumor/genética , Vimentina/genética
18.
Vaccines (Basel) ; 10(5)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35632512

RESUMEN

The incidence of COVID-19 breakthrough infections-an infection that occurs after you have been vaccinated-has increased in frequency since the Delta and now Omicron variants of the SARS-CoV-2 coronavirus have become the dominant strains transmitted in the United States (US). Evidence suggests that individuals with breakthrough infections, though rare and expected, may readily transmit COVID-19 to unvaccinated populations, posing a continuing threat to the unvaccinated. Here, we examine factors contributing to breakthrough infections including a poor immune response to the vaccines due to the fact of advanced age and underlying comorbidities, the natural waning of immune protection from the vaccines over time, and viral variants that escape existing immune protection from the vaccines. The rise in breakthrough infections in the US and how they contribute to new infections, specifically among the unvaccinated and individuals with compromised immune systems, will create the need for additional booster vaccinations or development of modified vaccines that directly target current variants circulating among the general population. The need to expedite vaccination among the more than 49.8 million unvaccinated eligible people in the US is critical.

19.
Vaccines (Basel) ; 10(2)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35214670

RESUMEN

To end or curtail the COVID-19 pandemic, it is essential to incorporate mobile vaccination programs into the national vaccination strategy. Mobile COVID-19 vaccination programs play an important role in providing comprehensive vaccination from federally qualified institutions to underserved communities facing a higher risk for COVID-19 acquisition. The Meharry Medical College COVID-19 mobile vaccine program (MMC-MVP) has provided lifesaving COVID-19 vaccines, free of charge, to communities throughout Middle Tennessee. Mobile deployment is vital for those forced to travel long distances to get vaccinated and who have limited access to medical providers or vaccine clinics, lack access to public transportation, or may be homebound. The MMC-MVP, established on 13 April 2021, via funding from the Bloomberg Foundation, is sourced with infectious disease experts, nurse practitioners, and community engagement personnel to provide COVID-19 vaccinations and information in a culturally competent manner to diverse communities in Middle Tennessee. To provide broader access to COVID-19 vaccinations and vaccine-related information, the MMC-MVP partnered with the Tennessee Community Engagement Alliance, Vanderbilt University School of Nursing COVID-19 vaccine strike teams, non-academic, community-based organizations, and faith-based organizations. During the September 2021 COVID-19 surge in Tennessee, the MMC-MVP provided nearly 5000 free COVID-19 vaccinations to targeted, underserved communities. The MMC-MVP has provided vaccine equity in communities with the highest risk for acquiring COVID-19 and with greatest need in this pandemic.

20.
J Health Care Poor Underserved ; 33(1): 419-436, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35153231

RESUMEN

Cancer health disparities among populations are the result of a combination of socioeconomic, environmental, behavioral, and biological factors, which affect cancer incidence, prevalence, mortality, survivorship, financial burden, and screening rates. The long-standing Meharry Medical College (MMC), Vanderbilt-Ingram Cancer Center (VICC), Tennessee State University (TSU) Cancer Partnership has built an exceptional cancer research and training environment to support the efforts of diverse investigators in addressing disparities. Over the past 20 years, collaborative partnership efforts across multiple disciplines have supported research into the determinants of cancer health disparities at a National Cancer Institute-designated comprehensive cancer center (VICC) along with enhancing research infrastructure and training at MMC and TSU, two institutions that serve predominantly underserved populations and underrepresented students. Moreover, the geographical placement of this partnership in Tennessee, a region with some of the highest cancer incidence and mortality in the United States, has provided an especially important opportunity to positively affect outcomes for cancer patients.


Asunto(s)
Neoplasias , Humanos , Neoplasias/epidemiología , Neoplasias/terapia , Investigadores , Tennessee/epidemiología , Estados Unidos/epidemiología , Universidades , Poblaciones Vulnerables
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...