Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Kidney Int Rep ; 8(11): 2385-2394, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38025214

RESUMEN

Introduction: Excessive dialytic potassium (K) and acid removal are risk factors for arrhythmias; however, treatment-to-treatment dialysate modification is rarely performed. We conducted a multicenter, pilot randomized study to test the safety, feasibility, and efficacy of 4 point-of-care (POC) chemistry-guided protocols to adjust dialysate K and bicarbonate (HCO3) in outpatient hemodialysis (HD) clinics. Methods: Participants received implantable cardiac loop monitors and crossed over to four 4-week periods with adjustment of dialysate K or HCO3 at each treatment according to pre-HD POC values: (i) K-removal minimization, (ii) K-removal maximization, (iii) Acidosis avoidance, and (iv) Alkalosis avoidance. The primary end point was percentage of treatments adhering to the intervention algorithm. Secondary endpoints included pre-HD K and HCO variability, adverse events, and rates of clinically significant arrhythmias (CSAs). Results: Nineteen subjects were enrolled in the study. HD staff completed POC testing and correctly adjusted the dialysate in 604 of 708 (85%) of available HD treatments. There was 1 K ≤3, 29 HCO3 <20 and 2 HCO3 >32 mEq/l and no serious adverse events related to study interventions. Although there were no significant differences between POC results and conventional laboratory measures drawn concurrently, intertreatment K and HCO3 variability was high. There were 45 CSA events; most were transient atrial fibrillation (AF), with numerically fewer events during the alkalosis avoidance period (8) and K-removal maximization period (3) compared to other intervention periods (17). There were no significant differences in CSA duration among interventions. Conclusion: Algorithm-guided K/HCO3 adjustment based on POC testing is feasible. The variability of intertreatment K and HCO3 suggests that a POC-laboratory-guided algorithm could markedly alter dialysate-serum chemistry gradients. Definitive end point-powered trials should be considered.

2.
Heart Rhythm ; 5(8): 1134-41, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18675224

RESUMEN

BACKGROUND: Atrial fibrillation catheter ablation is frequently guided by identification of fractionated electrograms, which are thought to be critical for maintenance of the arrhythmia. Objective automated means for identifying fractionation independent of physician interpretation have not been standardized or validated. OBJECTIVE: The purpose of this study was to standardize and validate an automated algorithm to rapidly identify fractionated electrograms for high-density atrial fibrillation fractionation mapping. METHODS: Left and right atrial fractionation maps were generated by EnSite NavX 6.0 software, using standardized ablation catheters in eight patients with atrial fibrillation. Two blinded electrophysiologists interpreted all electrograms as either fractionated or not fractionated. A stepwise approach was used to optimize automated settings to accurately identify fractionation. High-density fractionation maps were generated with a 20-pole mapping catheter in eight other patients. Two blinded electrophysiologists interpreted all electrograms as near field or far field. The algorithm was refined to optimize settings to exclude far-field signals and retain near-field signals. The sampling segment length was adjusted to optimize recording time to ensure reproducibility. RESULTS: Using 1,514 points, the automated software achieved sensitivity of 0.75 and specificity of 0.80 for identification of fractionated electrograms. Using 725 points collected via multipole catheters with optimal automated settings, 94% of near-field fractionated electrograms were accurately identified. A 6-second sampling length was needed for reproducible fractionation measurements. CONCLUSION: Standardized settings of EnSite NavX 6.0 software with 6-second data collection per point can rapidly and accurately generate high-density fractionation maps independent of physician electrogram interpretation. This may allow for an automated, standardized approach to atrial fibrillation fractionated ablation.


Asunto(s)
Fibrilación Atrial/cirugía , Mapeo del Potencial de Superficie Corporal/métodos , Ablación por Catéter/métodos , Endocardio/patología , Algoritmos , Fibrilación Atrial/fisiopatología , Mapeo del Potencial de Superficie Corporal/instrumentación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...