Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37873223

RESUMEN

Microglia, the immune cells of the brain, are increasingly implicated in neurodegenerative disorders through genetic studies. However, how genetic risk factors for these diseases are related to microglial gene expression, microglial function, and ultimately disease, is still largely unknown. Microglia change rapidly in response to alterations in their cellular environment, which is regulated through changes in transcriptional programs, which are as yet poorly understood. Here, we compared the effects of a set of inflammatory and restorative stimuli (lipopolysaccharide, interferon-gamma, resiquimod, tumor necrosis factor-alpha, adenosine triphosphate, dexamethasone, and interleukin-4) on human microglial cells from 67 different donors (N = 398 samples) at the gene and transcript level. We show that microglia from different anatomical brain regions show distinct responses to inflammatory stimuli. We observed a greater overlap between human stimulated microglia and human monocytes than with mouse microglia. We define specific microglial signatures across conditions which are highly relevant for a wide range of biological functions and complex human diseases. Finally, we used our stimulation signatures to interpret associations from Alzheimer's disease (AD) genetic studies and microglia by integrating our inflammatory gene expression profiles with common genetic variants to map cis -expression QTLs (eQTLs). Together, we provide the most comprehensive transcriptomic database of the human microglia responsome. Highlights: RNA-sequencing of 398 human microglial samples exposed to six different triggers.Microglia from different anatomical regions show distinct stimulation responses.Responses in human microglia show a greater overlap with human monocytes than murine microglia.Mapping of response Quantitative Trait Loci identifies interactions between genotype and effect of stimulation on gene expression.Our atlas provides a reference map for interpreting microglia signatures in health and disease.

2.
Mol Psychiatry ; 28(4): 1502-1515, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37055513

RESUMEN

BACKGROUND: Neuroinflammatory processes have been hypothesized to play a role in the pathogenesis of psychiatric and neurological diseases. Studies on this topic often rely on analysis of inflammatory biomarkers in peripheral blood. Unfortunately, the extent to which these peripheral markers reflect inflammatory processes in the central nervous system (CNS) is unclear. METHODS: We performed a systematic review and found 29 studies examining the association between inflammatory marker levels in blood and cerebrospinal (CSF) samples. We performed a random effects meta-analysis of 21 studies (pooled n = 1679 paired samples) that reported the correlation of inflammatory markers in paired blood-CSF samples. RESULTS: A qualitative review revealed moderate to high quality of included studies with the majority of studies reporting no significant correlation of inflammatory markers between paired blood-CSF. Meta-analyses revealed a significant low pooled correlation between peripheral and CSF biomarkers (r = 0.21). Meta-analyses of individual cytokines revealed a significant pooled correlation for IL-6 (r = 0.26) and TNFα (r = 0.3) after excluding outlier studies, but not for other cytokines. Sensitivity analyses showed that correlations were highest among participants with a median age above 50 (r = 0.46) and among autoimmune disorder patients (r = 0.35). CONCLUSION: This systematic review and meta-analysis revealed poor correlation between peripheral and central inflammatory markers in paired blood-CSF samples, with increased correlations in certain study populations. Based on the current findings, peripheral inflammatory markers are a poor reflection of the neuroinflammatory profile.


Asunto(s)
Sistema Nervioso Central , Citocinas , Humanos , Biomarcadores
3.
J Neurovirol ; 28(1): 64-91, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35138593

RESUMEN

HIV persistence in the CNS despite antiretroviral therapy may cause neurological disorders and poses a critical challenge for HIV cure. Understanding the pathobiology of HIV-infected microglia, the main viral CNS reservoir, is imperative. Here, we provide a comprehensive comparison of human microglial culture models: cultured primary microglia (pMG), microglial cell lines, monocyte-derived microglia (MDMi), stem cell-derived microglia (iPSC-MG), and microglia grown in 3D cerebral organoids (oMG) as potential model systems to advance HIV research on microglia. Functional characterization revealed phagocytic capabilities and responsiveness to LPS across all models. Microglial transcriptome profiles of uncultured pMG showed the highest similarity to cultured pMG and oMG, followed by iPSC-MG and then MDMi. Direct comparison of HIV infection showed a striking difference, with high levels of viral replication in cultured pMG and MDMi and relatively low levels in oMG resembling HIV infection observed in post-mortem biopsies, while the SV40 and HMC3 cell lines did not support HIV infection. Altogether, based on transcriptional similarities to uncultured pMG and susceptibility to HIV infection, MDMi may serve as a first screening tool, whereas oMG, cultured pMG, and iPSC-MG provide more representative microglial culture models for HIV research. The use of current human microglial cell lines (SV40, HMC3) is not recommended.


Asunto(s)
Infecciones por VIH , VIH-1 , Células Cultivadas , Infecciones por VIH/patología , VIH-1/genética , Humanos , Microglía/patología , Monocitos , Replicación Viral
4.
Glia ; 69(5): 1251-1267, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33410555

RESUMEN

Microglia, the immune cells of the brain, are important for neurodevelopment and have been hypothesized to play a role in the pathogenesis of schizophrenia (SCZ). Although previous postmortem studies pointed toward presence of microglial activation, this view has been challenged by more recent hypothesis-driven and hypothesis-free analyses. The aim of the present study is to further understand the observed microglial changes in SCZ. We first performed a detailed meta-analysis on studies that analyzed microglial cell density, microglial morphology, and expression of microglial-specific markers. We then further explored findings from the temporal cortex by performing immunostainings and qPCRs on an additional dataset. A random effect meta-analysis showed that the density of microglial cells was unaltered in SCZ (ES: 0.144 95% CI: 0.102 to 0.390, p = .250), and clear changes in microglial morphology were also absent. The expression of several microglial specific genes, such as CX3CR1, CSF1R, IRF8, OLR1, and TMEM119 was decreased in SCZ (ES: -0.417 95% CI: -0.417 to -0.546, p < .0001), consistent with genome-wide transcriptome meta-analysis results. These results indicate a change in microglial phenotype rather than density, which was validated with the use of TMEM119/Iba1 immunostainings on temporal cortex of a separate cohort. Changes in microglial gene expression were overlapping between SCZ and other psychiatric disorders, but largely opposite from changes reported in Alzheimer's disease. This distinct microglial phenotype provides a crucial molecular hallmark for future research into the role of microglia in SCZ and other psychiatric disorders.


Asunto(s)
Enfermedad de Alzheimer , Esquizofrenia , Biomarcadores , Encéfalo , Perfilación de la Expresión Génica , Humanos , Microglía , Esquizofrenia/genética
5.
Mol Psychiatry ; 26(7): 3336-3349, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33028963

RESUMEN

Findings from epidemiological studies, biomarker measurements and animal experiments suggest a role for aberrant immune processes in the pathogenesis of major depressive disorder (MDD). Microglia, the resident immune cells of the brain, are likely to play a key role in these processes. Previous post-mortem studies reported conflicting findings regarding microglial activation and an in-depth profiling of those cells in MDD is lacking. The aim of this study was therefore to characterize the phenotype and function of microglia in MDD. We isolated microglia from post-mortem brain tissue of patients with MDD (n = 13-19) and control donors (n = 12-25). Using flow cytometry and quantitative Polymerase Chain Reaction (qPCR), we measured protein and mRNA levels of a panel of microglial markers across four different brain regions (medial frontal gyrus, superior temporal gyrus, thalamus, and subventricular zone). In MDD cases, we found a significant upregulation of CX3CR1 and TMEM119 mRNA expression and a downregulation of CD163 mRNA expression and CD14 protein expression across the four brain regions. Expression levels of microglial activation markers, such as HLA-DRA, IL6, and IL1ß, as well as the inflammatory responses to lipopolysaccharide and dexamethasone were unchanged. Our findings suggest that microglia enhance homeostatic functions in MDD but are not immune activated.


Asunto(s)
Trastorno Depresivo Mayor , Microglía , Animales , Autopsia , Encéfalo , Humanos , Lipopolisacáridos
6.
Schizophr Bull ; 46(2): 374-386, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-31192350

RESUMEN

Changed synapse density has been suggested to be involved in the altered brain connectivity underlying schizophrenia (SCZ) pathology. However, postmortem studies addressing this topic are heterogeneous and it is not known whether changes are restricted to specific brain regions. Using meta-analysis, we systematically and quantitatively reviewed literature on the density of postsynaptic elements in postmortem brain tissue of patients with SCZ compared to healthy controls. We included 3 outcome measurements for postsynaptic elements: dendritic spine density (DSD), postsynaptic density (PSD) number, and PSD protein expression levels. Random-effects meta-analysis (31 studies) revealed an overall decrease in density of postsynaptic elements in SCZ (Hedges's g: -0.33; 95% CI: -0.60 to -0.05; P = .020). Subgroup analyses showed reduction of postsynaptic elements in cortical but not subcortical tissues (Hedges's g: -0.44; 95% CI: -0.76 to -0.12; P = .008, Hedges's g: -0.11; 95% CI: -0.54 to 0.35; P = .671) and specifically a decrease for the outcome measure DSD (Hedges's g: -0.81; 95% CI: -1.37 to -0.26; P = .004). Further exploratory analyses showed a significant decrease of postsynaptic elements in the prefrontal cortex and cortical layer 3. In all analyses, substantial heterogeneity was present. Meta-regression analyses showed no influence of age, sex, postmortem interval, or brain bank on the effect size. This meta-analysis shows a region-specific decrease in the density of postsynaptic elements in SCZ. This phenotype provides an important cellular hallmark for future preclinical and neuropathological research in order to increase our understanding of brain dysconnectivity in SCZ.


Asunto(s)
Encéfalo/patología , Esquizofrenia/patología , Sinapsis/patología , Humanos
7.
Transl Psychiatry ; 9(1): 311, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31748521

RESUMEN

Exposure to neurotropic pathogens has been hypothesized to be a risk factor for the development of bipolar disorder (BD). However, evidence so far is inconsistent. We, therefore, analyzed the seroprevalence and titer levels of IgG antibodies against several herpesviruses and Toxoplasma gondii (T. gondii) in plasma of 760 patients with a bipolar disorder, 144 first-degree matched relatives and 132 controls of the Dutch Bipolar (DB) Cohort using ELISA. In addition, we performed a literature-based meta-analysis on the seroprevalence of IgG antibodies against these pathogens (n = 14). Our results in the DB Cohort and subsequent meta-analysis (n = 2364 BD patients, n = 5101 controls) show no association between exposure to herpesviruses and bipolar disorder (HSV-1 [adjusted OR 0.842, 95% CI 0.567-1.230], HSV-2 [adjusted OR 0.877, 95% CI 0.437-1.761], CMV [adjusted OR 0.884 95% CI 0.603-1.295], EBV [adjusted OR 0.968 95% CI 0.658-1.423]). In the DB Cohort, we did not find an association between bipolar disorder and T. gondii titer or seroprevalence either [adjusted OR 1.018, 95% CI 0.672-1.542]. The overall OR was not significant for T. gondii [OR: 1.4, 95% CI 0.95-1.90, p = 0.09), but subgroup analyses in age groups below 40 years showed a significantly increased seroprevalence of T. gondii IgGs in BD [OR: 1.8 (95% CI 1.10-2.89, p = 0.021]. Our meta-analysis indicates that T. gondii exposure may be a risk factor for BD in certain subpopulations.


Asunto(s)
Anticuerpos Antiprotozoarios/sangre , Trastorno Bipolar/parasitología , Herpes Simple/diagnóstico , Toxoplasmosis/inmunología , Adulto , Anticuerpos Antivirales/sangre , Trastorno Bipolar/inmunología , Trastorno Bipolar/virología , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Herpes Simple/epidemiología , Herpesvirus Humano 1 , Herpesvirus Humano 2 , Humanos , Inmunoglobulina G/sangre , Modelos Logísticos , Masculino , Persona de Mediana Edad , Países Bajos , Factores de Riesgo , Estudios Seroepidemiológicos , Toxoplasma
8.
Neurosci Biobehav Rev ; 103: 150-162, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31163205

RESUMEN

Bipolar disorder (BD) is a complex neurobiological disease. It is likely that both neurons and glial cells are affected in BD, yet how these cell types are changed at the structural and functional level is still largely unknown. In this review we provide an overview of postmortem studies analyzing structural cellular changes in BD, including the density, number and size of neurons and glia. We categorize the results per cell-type and validate outcome measures per brain region. Despite variations by brain region, outcome measure and methodology, several patterns could be identified. Total neuron, total glia, and cell subtypes astrocyte, microglia and oligodendrocyte presence appears unchanged in the BD brain. Interneuron density may be decreased across various cortical areas, yet findings of interneuron subpopulations show discrepancies. This structural review brings to light issues in validation and replication. Future research should therefore prioritize the validation of existing studies in order to increasingly refine the conceptual models of BD.


Asunto(s)
Trastorno Bipolar/patología , Encéfalo/patología , Neuroglía/patología , Neuronas/patología , Humanos
9.
Transl Psychiatry ; 9(1): 153, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-31127084

RESUMEN

Genetic, epidemiological, and biomarker studies suggest that the immune system is involved in the pathogenesis of bipolar disorder (BD). It has therefore been hypothesized that immune activation of microglia, the resident immune cells of the brain, is associated with the disease. Only a few studies have addressed the involvement of microglia in BD so far and a more detailed immune profiling of microglial activation is lacking. Here, we applied a multi-level approach to determine the activation state of microglia in BD post-mortem brain tissue. We did not find differences in microglial density, and mRNA expression of microglial markers in the medial frontal gyrus (MFG) of patients with BD. Furthermore, we performed in-depth characterization of human primary microglia isolated from fresh brain tissue of the MFG, superior temporal gyrus (STG), and thalamus (THA). Similarly, these ex vivo isolated microglia did not show elevated expression of inflammatory markers. Finally, challenging the isolated microglia with LPS did not result in an increased immune response in patients with BD compared to controls. In conclusion, our study shows that microglia in post-mortem brain tissue of patients with BD are not immune activated.


Asunto(s)
Trastorno Bipolar/inmunología , Corteza Cerebral/inmunología , Microglía/inmunología , Tálamo/inmunología , Anciano , Anciano de 80 o más Años , Autopsia , Biomarcadores/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...