Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 14863, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684404

RESUMEN

Gap junctions (GJs) formed of connexin (Cx) protein are the main conduits of electrical signals in the heart. Studies indicate that the transitional zone of the atrioventricular (AV) node contains heterotypic Cx43/Cx45 GJ channels which are highly sensitive to transjunctional voltage (Vj). To investigate the putative role of Vj gating of Cx43/Cx45 channels, we performed electrophysiological recordings in cell cultures and developed a novel mathematical/computational model which, for the first time, combines GJ channel Vj gating with a model of membrane excitability to simulate a spread of electrical pulses in 2D. Our simulation and electrophysiological data show that Vj transients during the spread of cardiac excitation can significantly affect the junctional conductance (gj) of Cx43/Cx45 GJs in a direction- and frequency-dependent manner. Subsequent simulation data indicate that such pulse-rate-dependent regulation of gj may have a physiological role in delaying impulse propagation through the AV node. We have also considered the putative role of the Cx43/Cx45 channel gating during pathological impulse propagation. Our simulation data show that Vj gating-induced changes in gj can cause the drift and subsequent termination of spiral waves of excitation. As a result, the development of fibrillation-like processes was significantly reduced in 2D clusters, which contained Vj-sensitive Cx43/Cx45 channels.


Asunto(s)
Arritmias Cardíacas , Conexina 43 , Humanos , Nodo Atrioventricular , Uniones Comunicantes , Conexinas
2.
Biophys J ; 122(21): 4176-4193, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37766427

RESUMEN

The advancement of single-channel-level recording via the patch-clamp technique has provided a powerful means of assessing the detailed behaviors of various types of ion channels in native and exogenously expressed cellular environments. However, such recordings of gap junction (GJ) channels are hampered by unique challenges that are related to their unusual intercellular configuration and natural clustering into densely packed plaques. Thus, the methods for reliable cross-correlation of data recorded at macroscopic and single-channel levels are lacking in studies of GJs. To address this issue, we combined our previously published four-state model (4SM) of GJ channel gating by voltage with maximum likelihood estimation (MLE)-based analyses of electrophysiological recordings of GJ channel currents. First, we consider evaluation of single-channel characteristics and the methods for efficient stochastic simulation of single GJ channels from the kinetic scheme described by 4SM using data obtained from macroscopic recordings. We then present an MLE-based methodology for extraction of information about transition rates for GJ channels and, ultimately, gating parameters defined in 4SM from recordings with visible unitary events. The validity of the proposed methodology is illustrated using stochastic simulations of single GJ channels and is extended to electrophysiological data recorded in cells expressing connexin 43 tagged with enhanced green fluorescent protein.


Asunto(s)
Conexinas , Activación del Canal Iónico , Humanos , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Canales Iónicos/metabolismo , Células HeLa
3.
Front Physiol ; 13: 839223, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35264979

RESUMEN

Electrical synapses between neurons in the mammalian CNS are predominantly formed of the connexin36 (Cx36) gap junction (GJ) channel protein. Unique among GJs formed of a number of other members of the Cx gene family, Cx36 GJs possess a high sensitivity to intracellular Mg2+ that can robustly act to modulate the strength of electrical synaptic transmission. Although a putative Mg2+ binding site was previously identified to reside in the aqueous pore in the first extracellular (E1) loop domain, the involvement of the N-terminal (NT) domain in the atypical response of Cx36 GJs to pH was shown to depend on intracellular levels of Mg2+. In this study, we examined the impact of amino acid substitutions in the NT domain on Mg2+ modulation of Cx36 GJs, focusing on positions predicted to line the pore funnel, which constitutes the cytoplasmic entrance of the channel pore. We find that charge substitutions at the 8th, 13th, and 18th positions had pronounced effects on Mg2+ sensitivity, particularly at position 13 at which an A13K substitution completely abolished sensitivity to Mg2+. To assess potential mechanisms of Mg2+ action, we constructed and tested a series of mathematical models that took into account gating of the component hemichannels in a Cx36 GJ channel as well as Mg2+ binding to each hemichannel in open and/or closed states. Simultaneous model fitting of measurements of junctional conductance, gj, and transjunctional Mg2+ fluxes using a fluorescent Mg2+ indicator suggested that the most viable mechanism for Cx36 regulation by Mg2+ entails the binding of Mg2+ to and subsequent stabilization of the closed state in each hemichannel. Reduced permeability to Mg2+ was also evident, particularly for the A13K substitution, but homology modeling of all charge-substituted NT variants showed only a moderate correlation between a reduction in the negative electrostatic potential and a reduction in the permeability to Mg2+ ions. Given the reported role of the E1 domain in Mg2+ binding together with the impact of NT substitutions on gating and the apparent state-dependence of Mg2+ binding, this study suggests that the NT domain can be an integral part of Mg2+ modulation of Cx36 GJs likely through the coupling of conformational changes between NT and E1 domains.

4.
Biophys J ; 119(8): 1640-1655, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32950074

RESUMEN

Gap junction (GJ) channels, formed of connexin (Cx) proteins, provide a direct pathway for metabolic and electrical cell-to-cell communication. These specialized channels are not just passive conduits for the passage of ions and metabolites but have been shown to gate robustly in response to transjunctional voltage, Vj, the voltage difference between two coupled cells. Voltage gating of GJs could play a physiological role, particularly in excitable cells, which can generate large transients in membrane potential during the propagation of action potentials. We present a mathematical/computational model of GJ channel voltage gating to assess properties of GJ channels that takes into account contingent gating of two series hemichannels and the distribution of Vj across each hemichannel. From electrophysiological recordings in cell cultures expressing Cx43 or Cx45, the principal isoforms expressed in cardiac tissue, various data sets were fitted simultaneously using global optimization. The results showed that the model is capable of describing both steady-state and kinetic properties of homotypic and heterotypic GJ channels composed of these Cxs. Moreover, mathematical analyses showed that the model can be simplified to a reversible two-state system and solved analytically using a rapid equilibrium assumption. Given that excitable cells are arranged in interconnected networks, the equilibrium assumption allows for a substantial reduction in computation time, which is useful in simulations of large clusters of coupled cells. Overall, this model can serve as a tool for the studying of GJ channel gating and its effects on the spread of excitation in networks of electrically coupled cells.


Asunto(s)
Uniones Comunicantes , Activación del Canal Iónico , Conexinas/genética , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Canales Iónicos/metabolismo , Cinética
5.
Front Physiol ; 9: 362, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29706896

RESUMEN

Connexin-36 (Cx36) protein forms gap junction (GJ) channels in pancreatic beta cells and is also the main Cx isoform forming electrical synapses in the adult mammalian brain. Cx36 GJs can be regulated by intracellular pH (pHi) and cytosolic magnesium ion concentration ([Mg2+]i), which can vary significantly under various physiological and pathological conditions. However, the combined effect and relationship of these two factors over Cx36-dependent coupling have not been previously studied in detail. Our experimental results in HeLa cells expressing Cx36 show that changes in both pHi and [Mg2+]i affect junctional conductance (gj) in an interdependent manner; in other words, intracellular acidification cause increase or decay in gj depending on whether [Mg2+]i is high or low, respectively, and intracellular alkalization cause reduction in gj independently of [Mg2+]i. Our experimental and modelling data support the hypothesis that Cx36 GJ channels contain two separate gating mechanisms, and both are differentially sensitive to changes in pHi and [Mg2+]i. Using recombinant Cx36 we found that two glutamate residues in the N-terminus could be partly responsible for the observed interrelated effect of pHi and [Mg2+]i. Mutation of glutamate at position 8 attenuated the stimulatory effect of intracellular acidification at high [Mg2+]i, while mutation at position 12 and double mutation at both positions reversed stimulatory effect to inhibition. Moreover, Cx36*E8Q lost the initial increase of gj at low [Mg2+]i and double mutation lost the sensitivity to high [Mg2+]i. These results suggest that E8 and E12 are involved in regulation of Cx36 GJ channels by Mg2+ and H+ ions.

6.
PLoS Comput Biol ; 13(4): e1005464, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28384220

RESUMEN

We combined the Hodgkin-Huxley equations and a 36-state model of gap junction channel gating to simulate electrical signal transfer through electrical synapses. Differently from most previous studies, our model can account for dynamic modulation of junctional conductance during the spread of electrical signal between coupled neurons. The model of electrical synapse is based on electrical properties of the gap junction channel encompassing two fast and two slow gates triggered by the transjunctional voltage. We quantified the influence of a difference in input resistances of electrically coupled neurons and instantaneous conductance-voltage rectification of gap junctions on an asymmetry of cell-to-cell signaling. We demonstrated that such asymmetry strongly depends on junctional conductance and can lead to the unidirectional transfer of action potentials. The simulation results also revealed that voltage spikes, which develop between neighboring cells during the spread of action potentials, can induce a rapid decay of junctional conductance, thus demonstrating spiking activity-dependent short-term plasticity of electrical synapses. This conclusion was supported by experimental data obtained in HeLa cells transfected with connexin45, which is among connexin isoforms expressed in neurons. Moreover, the model allowed us to replicate the kinetics of junctional conductance under different levels of intracellular concentration of free magnesium ([Mg2+]i), which was experimentally recorded in cells expressing connexin36, a major neuronal connexin. We demonstrated that such [Mg2+]i-dependent long-term plasticity of the electrical synapse can be adequately reproduced through the changes of slow gate parameters of the 36-state model. This suggests that some types of chemical modulation of gap junctions can be executed through the underlying mechanisms of voltage gating. Overall, the developed model accounts for direction-dependent asymmetry, as well as for short- and long-term plasticity of electrical synapses. Our modeling results demonstrate that such complex behavior of the electrical synapse is important in shaping the response of coupled neurons.


Asunto(s)
Sinapsis Eléctricas/fisiología , Uniones Comunicantes/fisiología , Modelos Neurológicos , Neuronas/fisiología , Potenciales de Acción , Comunicación Celular , Conexinas/metabolismo , Células HeLa , Humanos , Magnesio/metabolismo , Vías Nerviosas , Plasticidad Neuronal
7.
Biophys J ; 110(6): 1322-33, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-27028642

RESUMEN

Gap-junction (GJ) channels formed from connexin (Cx) proteins provide direct pathways for electrical and metabolic cell-cell communication. Earlier, we developed a stochastic 16-state model (S16SM) of voltage gating of the GJ channel containing two pairs of fast and slow gates, each operating between open (o) and closed (c) states. However, experimental data suggest that gates may in fact contain two or more closed states. We developed a model in which the slow gate operates according to a linear reaction scheme, o↔c1↔c2, where c1 and c2 are initial-closed and deep-closed states that both close the channel fully, whereas the fast gate operates between the open state and the closed state and exhibits a residual conductance. Thus, we developed a stochastic 36-state model (S36SM) of GJ channel gating that is sensitive to transjunctional voltage (Vj). To accelerate simulation and eliminate noise in simulated junctional conductance (gj) records, we transformed an S36SM into a Markov chain 36-state model (MC36SM) of GJ channel gating. This model provides an explanation for well-established experimental data, such as delayed gj recovery after Vj gating, hysteresis of gj-Vj dependence, and the low ratio of functional channels to the total number of GJ channels clustered in junctional plaques, and it has the potential to describe chemically mediated gating, which cannot be reflected using an S16SM. The MC36SM, when combined with global optimization algorithms, can be used for automated estimation of gating parameters including probabilities of c1↔c2 transitions from experimental gj-time and gj-Vj dependencies.


Asunto(s)
Uniones Comunicantes/metabolismo , Activación del Canal Iónico , Canales Iónicos/metabolismo , Animales , Simulación por Computador , Células HeLa , Humanos , Modelos Biológicos , Probabilidad , Ratas , Procesos Estocásticos
8.
J Gen Physiol ; 147(3): 273-88, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26880752

RESUMEN

We combined Hodgkin-Huxley equations and gating models of gap junction (GJ) channels to simulate the spread of excitation in two-dimensional networks composed of neurons interconnected by voltage-gated GJs. Each GJ channel contains two fast and slow gates, each exhibiting current-voltage (I-V) rectification and gating properties that depend on transjunctional voltage (Vj). The data obtained show how junctional conductance (gj), which is necessary for synchronization of the neuronal network, depends on its size and the intrinsic firing rate of neurons. A phase shift between action potentials (APs) of neighboring neurons creates bipolar, short-lasting Vj spikes of approximately ± 100 mV that induce Vj gating, leading to a small decay of gj, which can accumulate into larger decays during bursting activity of neurons. We show that I-V rectification of GJs in local regions of the two-dimensional network of neurons can lead to unidirectional AP transfer and consequently to reverberation of excitation. This reverberation can be initiated by a single electrical pulse and terminated by a low-amplitude pulse applied in a specific window of reverberation cycle. Thus, the model accounts for the influence of dynamically modulatable electrical synapses in shaping the function of a neuronal network and the formation of reverberation, which, as proposed earlier, may be important for the development of short-term memory and its consolidation into long-term memory.


Asunto(s)
Potenciales de Acción , Conexinas/fisiología , Sinapsis Eléctricas/fisiología , Modelos Neurológicos , Neuronas/fisiología , Animales , Conexinas/metabolismo , Sinapsis Eléctricas/metabolismo , Humanos
9.
Biomed Res Int ; 2015: 936295, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25705700

RESUMEN

The primary goal of this work was to study advantages of numerical methods used for the creation of continuous time Markov chain models (CTMC) of voltage gating of gap junction (GJ) channels composed of connexin protein. This task was accomplished by describing gating of GJs using the formalism of the stochastic automata networks (SANs), which allowed for very efficient building and storing of infinitesimal generator of the CTMC that allowed to produce matrices of the models containing a distinct block structure. All of that allowed us to develop efficient numerical methods for a steady-state solution of CTMC models. This allowed us to accelerate CPU time, which is necessary to solve CTMC models, ~20 times.


Asunto(s)
Conexinas/química , Uniones Comunicantes/química , Cadenas de Markov , Redes Neurales de la Computación , Humanos , Canales Iónicos/química , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA