Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 298(10): 102455, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36063994

RESUMEN

Pore-forming proteins perforate lipid membranes and consequently affect their integrity and cell fitness. Therefore, it is not surprising that many of these proteins from bacteria, fungi, or certain animals act as toxins. While pore-forming proteins have also been found in plants, there is little information about their molecular structure and mode of action. Bryoporin is a protein from the moss Physcomitrium patens, and its corresponding gene was found to be upregulated by various abiotic stresses, especially dehydration, as well as upon fungal infection. Based on the amino acid sequence, it was suggested that bryoporin was related to the actinoporin family of pore-forming proteins, originally discovered in sea anemones. Here, we provide the first detailed structural and functional analysis of this plant cytolysin. The crystal structure of monomeric bryoporin is highly similar to those of actinoporins. Our cryo-EM analysis of its pores showed an actinoporin-like octameric structure, thereby revealing a close kinship of proteins from evolutionarily distant organisms. This was further confirmed by our observation of bryoporin's preferential binding to and formation of pores in membranes containing animal sphingolipids, such as sphingomyelin and ceramide phosphoethanolamine; however, its binding affinity was weaker than that of actinoporin equinatoxin II. We determined bryoporin did not bind to major sphingolipids found in fungi or plants, and its membrane-binding and pore-forming activity was enhanced by various sterols. Our results suggest that bryoporin could represent a part of the moss defense arsenal, acting as a pore-forming toxin against membranes of potential animal pathogens, parasites, or predators.


Asunto(s)
Bryopsida , Porinas , Animales , Secuencia de Aminoácidos , Bryopsida/genética , Bryopsida/metabolismo , Venenos de Cnidarios/química , Citotoxinas , Porinas/genética , Porinas/metabolismo , Anémonas de Mar/química
2.
Biochim Biophys Acta Biomembr ; 1864(10): 183999, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35820494

RESUMEN

(-)-Epigallocatechin-3-gallate (EGCG) is a flavonoid known for its good antioxidant potential and health benefits. It is one of the most intriguing flavonoids, especially because of its specific interactions with model lipid membranes. It was noticed that EGCG might form EGCG rich domains/rafts at certain compositions of lipid membranes. In this article, we investigate whether EGCG forms EGCG rich domains when incorporated in 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) liposomes. Our results show that EGCG decreases lipid ordering parameter in ordered membranes and increases it in the case of disordered ones. Also, incorporation of EGCG does not affect the zeta-potential and shape of the liposomes, but it can induce aggregation of liposomes. Our study also demonstrates that liposomes with incorporated EGCG are highly protected against UV-light induced oxidation.


Asunto(s)
Catequina , Liposomas , Antioxidantes , Catequina/análogos & derivados , Lípidos
3.
Sci Adv ; 8(10): eabj9406, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35275729

RESUMEN

Microbial plant pathogens secrete a range of effector proteins that damage host plants and consequently constrain global food production. Necrosis and ethylene-inducing peptide 1-like proteins (NLPs) are produced by numerous phytopathogenic microbes that cause important crop diseases. Many NLPs are cytolytic, causing cell death and tissue necrosis by disrupting the plant plasma membrane. Here, we reveal the unique molecular mechanism underlying the membrane damage induced by the cytotoxic model NLP. This membrane disruption is a multistep process that includes electrostatic-driven, plant-specific lipid recognition, shallow membrane binding, protein aggregation, and transient pore formation. The NLP-induced damage is not caused by membrane reorganization or large-scale defects but by small membrane ruptures. This distinct mechanism of lipid membrane disruption is highly adapted to effectively damage plant cells.


Asunto(s)
Oomicetos , Lípidos , Necrosis , Oomicetos/metabolismo , Perforina/metabolismo , Plantas/metabolismo , Proteínas/metabolismo
4.
PLoS Pathog ; 17(4): e1009477, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33857257

RESUMEN

The lack of efficient methods to control the major diseases of crops most important to agriculture leads to huge economic losses and seriously threatens global food security. Many of the most important microbial plant pathogens, including bacteria, fungi, and oomycetes, secrete necrosis- and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs), which critically contribute to the virulence and spread of the disease. NLPs are cytotoxic to eudicot plants, as they disturb the plant plasma membrane by binding to specific plant membrane sphingolipid receptors. Their pivotal role in plant infection and broad taxonomic distribution makes NLPs a promising target for the development of novel phytopharmaceutical compounds. To identify compounds that bind to NLPs from the oomycetes Pythium aphanidermatum and Phytophthora parasitica, a library of 587 small molecules, most of which are commercially unavailable, was screened by surface plasmon resonance. Importantly, compounds that exhibited the highest affinity to NLPs were also found to inhibit NLP-mediated necrosis in tobacco leaves and Phytophthora infestans growth on potato leaves. Saturation transfer difference-nuclear magnetic resonance and molecular modelling of the most promising compound, anthranilic acid derivative, confirmed stable binding to the NLP protein, which resulted in decreased necrotic activity and reduced ion leakage from tobacco leaves. We, therefore, confirmed that NLPs are an appealing target for the development of novel phytopharmaceutical agents and strategies, which aim to directly interfere with the function of these major microbial virulence factors. The compounds identified in this study represent lead structures for further optimization and antimicrobial product development.


Asunto(s)
Phytophthora/patogenicidad , Enfermedades de las Plantas/prevención & control , Pythium/patogenicidad , Solanum tuberosum/genética , Simulación de Dinámica Molecular , Necrosis , Phytophthora/genética , Enfermedades de las Plantas/parasitología , Hojas de la Planta/genética , Hojas de la Planta/parasitología , Pythium/genética , Solanum tuberosum/parasitología , Resonancia por Plasmón de Superficie , Nicotiana/genética , Nicotiana/parasitología
5.
Methods Enzymol ; 649: 219-251, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33712188

RESUMEN

Pore-forming toxins (PFTs) act upon lipid membranes and appropriate model systems are of great importance in researching these proteins. Giant unilamellar vesicles (GUVs) are an excellent model membrane system to study interactions between lipids and proteins. Their main advantage is the size comparable to cells, which means that GUVs can be observed directly under the light microscope. Many PFTs properties can be studied by using GUVs, such as binding specificity, membrane reorganization upon protein binding and oligomerization, pore properties and mechanism of pore formation. GUVs also represent a good model for biotechnological approaches, e.g., in applications in synthetic biology and medicine. Each research area has its own demands for GUVs properties, so several different approaches for GUVs preparations have been developed and will be discussed in this chapter.


Asunto(s)
Lípidos , Liposomas Unilamelares , Unión Proteica
6.
Arch Biochem Biophys ; 675: 108121, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31574257

RESUMEN

Human dipeptidyl-peptidase I (DPPI) is a tetrameric enzyme from the family of papain-like cysteine peptidases. It is ubiquitously expressed and plays important roles in general protein turnover, skin homeostasis and proteolytic processing of effector peptidases in immune cells. In this work we investigate allosteric regulation of DPPI and its relation to the oligomeric structure. First, we investigate the functional significance of the tetrameric state by comparing the kinetic properties of the tetrameric form (DPPItet) with a recombinant monomeric form (DPPImono). We find that both forms have very similar kinetic properties for the hydrolysis of a commonly used synthetic substrate. In agreement with previous studies, no cooperativity is observed in the tetramer. The only significant difference between both forms is a higher catalytic rate of DPPImono. We then characterize three compounds, 3'-nitrophthalanilic acid, chlorogenic acid and caffeic acid that affect DPPI activity via kinetic mechanisms consistent with binding outside of the active site. These compounds are the first known modifiers of DPPI that do not act as specific inhibitors. Chlorogenic acid and caffeic acid act as linear mixed and linear catalytic inhibitors, respectively, and do not discriminate between both forms. In contrast, 3'-nitrophthalanilic acid is a hyperbolic inhibitor that binds DPPItet and DPPImono with different affinities and inhibits their activities via different kinetic mechanisms. Altogether, these results show that the tetrameric structure of DPPI is not necessary for enzymatic activity, however, oligomerization-related structural features can play a role in its regulation.


Asunto(s)
Catepsina C/metabolismo , Regulación Alostérica , Catepsina C/química , Humanos , Hidrólisis , Cinética , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...