Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Health Econ ; 91: 102795, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37480592

RESUMEN

We derive the optimal funding mechanism to incentivize development and production of vaccines against diseases with epidemic potential. In the model, suppliers' costs are private information and investments are noncontractible, precluding cost-reimbursement contracts, requiring fixed-price contracts conditioned on delivery of a successful product. The high failure risk for individual vaccines calls for incentivizing multiple entrants, accomplished by the optimal mechanism, a (w+1)-price reverse Vickrey auction with reserve, where w is the number of selected entrants. Our analysis determines the optimal number of entrants and required funding level. Based on a distribution of supplier costs estimated from survey data, we simulate the optimal mechanism's performance in scenarios ranging from a small outbreak, causing harm in the millions of dollars, to the Covid-19 pandemic, causing harm in the trillions. We assess which mechanism features contribute most to its optimality.


Asunto(s)
COVID-19 , Administración Financiera , Vacunas , Humanos , Pandemias/prevención & control , COVID-19/epidemiología , COVID-19/prevención & control , Inversiones en Salud
2.
Immunol Rev ; 320(1): 236-249, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37295964

RESUMEN

In religious philosophy, the concept of karma represents the effect of one's past and present actions on one's future. Macrophages are highly plastic cells with myriad roles in health and disease. In the setting of cancer, macrophages are among the most plentiful members of the immune microenvironment where they generally support tumor growth and restrain antitumor immunity. However, macrophages are not necessarily born bad. Macrophages or their immediate progenitors, monocytes, are induced to traffic to the tumor microenvironment (TME) and during this process they are polarized toward a tumor-promoting phenotype. Efforts to deplete or repolarize tumor-associated macrophages (TAM) for therapeutic benefit in cancer have to date disappointed. By contrast, genetic engineering of macrophages followed by their transit into the TME may allow these impressionable cells to mend their ways. In this review, we summarize and discuss recent advances in the genetic engineering of macrophages for the treatment of cancer.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/genética , Macrófagos , Células Mieloides/patología , Monocitos , Microambiente Tumoral , Inmunoterapia Adoptiva
3.
Cells ; 12(9)2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37174743

RESUMEN

Genetically modified (GM) mice are essential tools in biomedical research. Traditional methods for generating GM mice are expensive and require specialized personnel and equipment. The use of clustered regularly interspaced short palindromic repeats (CRISPR) coupled with improved-Genome editing via Oviductal Nucleic Acids Delivery (i-GONAD) has highly increased the feasibility of producing GM mice in research laboratories. However, genetic modification in inbred mouse strains of interest such as C57BL/6 (B6) is still challenging because of their low fertility and embryo fragility. We have successfully generated multiple novel GM mouse strains in the B6 background while attempting to optimize i-GONAD. We found that i-GONAD reduced the litter size in superovulated pregnant females but did not impact pregnancy rates. Natural mating or low-hormone dose did not increase the low fertility rate observed in superovulated B6 females. However, diet enrichment had a positive effect on pregnancy success. We also optimized breeding conditions to increase the survival of small litters by co-housing i-GONAD-treated pregnant B6 females with synchronized pregnant FVB/NJ companion mothers. Thus, GM mice generation was increased by an enriched diet and shared pup rearing with highly fertile females such as FVB/NJ. In the present study, we generated 16 GM mice using a CRISPR/Cas system to target individual and multiple loci simultaneously or consecutively. We also compared homology-directed repair efficiency using different methods for LoxP insertion for conditional knockout mouse production. We found that a two-step serial LoxP insertion, in which each LoxP sequence was inserted individually in different i-GONAD procedures, was a low-risk high-efficiency method for generating floxed mice.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Embarazo , Femenino , Humanos , Ratones , Animales , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Ratones Endogámicos C57BL , Oviductos , Ratones Noqueados , Gónadas
4.
Int J Ind Organ ; 84: 102840, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35400771

RESUMEN

In Goodkin-Gold et al. (2021), we analyzed optimal subsidies for a vaccine against an epidemic outbreak like Covid-19. This companion paper alters the underlying epidemiological model to suit endemic diseases requiring continuous vaccination of new cohorts-also suiting an epidemic like Covid-19 if, following Gans (2020), one assumes peaks are leveled by social distancing. We obtain qualitatively similar results: across market structures ranging from perfect competition to monopoly, the subsidy needed to induce first-best vaccination coverage on the private market is highest for moderately infectious diseases, which invite the most free riding; extremely infectious diseases drive more consumers to become vaccinated, attenuating externalities. Stylized calibrations to HIV, among other diseases, suggest that first-best subsidies can be exorbitantly high when suppliers have market power, rationalizing alternative policies observed in practice such as bulk purchases negotiated by the government on behalf of the consumers.

5.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35131899

RESUMEN

Due to the enormous economic, health, and social costs of the COVID-19 pandemic, there are high expected social returns to investing in parallel in multiple approaches to accelerating vaccination. We argue there are high expected social returns to investigating the scope for lowering the dosage of some COVID-19 vaccines. While existing evidence is not dispositive, available clinical data on the immunogenicity of lower doses combined with evidence of a high correlation between neutralizing antibody response and vaccine efficacy suggests that half or even quarter doses of some vaccines could generate high levels of protection, particularly against severe disease and death, while potentially expanding supply by 450 million to 1.55 billion doses per month, based on supply projections for 2021. An epidemiological model suggests that, even if fractional doses are less effective than standard doses, vaccinating more people faster could substantially reduce total infections and deaths. The costs of further testing alternative doses are much lower than the expected public health and economic benefits. However, commercial incentives to generate evidence on fractional dosing are weak, suggesting that testing may not occur without public investment. Governments could support either experimental or observational evaluations of fractional dosing, for either primary or booster shots. Discussions with researchers and government officials in multiple countries where vaccines are scarce suggests strong interest in these approaches.


Asunto(s)
Vacunas contra la COVID-19/provisión & distribución , COVID-19/prevención & control , Inmunización Secundaria/métodos , Modelos Estadísticos , Vacunación/métodos , COVID-19/inmunología , COVID-19/mortalidad , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/economía , Países Desarrollados , Países en Desarrollo , Esquema de Medicación , Humanos , Inmunización Secundaria/economía , Uso Fuera de lo Indicado , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Análisis de Supervivencia , Vacunación/economía
6.
Front Immunol ; 12: 704862, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335618

RESUMEN

The salivary gland is an important tissue for persistence and transmission of multiple viruses. Previous work showed that salivary gland tissue-resident CD8+ T cells elicited by viruses were poorly functional ex vivo. Using a model of persistent murine cytomegalovirus (MCMV) infection, we now show that CD8+ T cells in the salivary gland and other non-lymphoid tissues of mice express multiple molecules associated with T cell exhaustion including PD-1, CD73 and CD39. Strikingly however, these molecules were expressed independently of virus or antigen. Rather, PD-1-expressing T cells remained PD-1+ after migration into tissues regardless of infection, while CD73 was activated on CD8+ T cells by TGF-ß signaling. Blockade of PD-L1, but not CD73, improved cytokine production by salivary gland T cells ex vivo and increased the expression of granzyme B after stimulation within the salivary gland. Nevertheless, salivary-gland localized CD8+ T cells could kill PD-L1-expressing targets in vivo, albeit with modest efficiency, and this was not improved by PD-L1 blockade. Moreover, the impact of PD-L1 blockade on granzyme B expression waned with time. In contrast, the function of kidney-localized T cells was improved by CD73 blockade, but was unaffected by PD-L1 blockade. These data show that tissue localization per se is associated with expression of inhibitory molecules that can impact T cell function, but that the functional impact of this expression is context- and tissue-dependent.


Asunto(s)
5'-Nucleotidasa/inmunología , Antígenos CD/inmunología , Apirasa/inmunología , Linfocitos T CD8-positivos/inmunología , Regulación de la Expresión Génica/inmunología , Receptor de Muerte Celular Programada 1/inmunología , 5'-Nucleotidasa/genética , Animales , Antígenos CD/genética , Apirasa/genética , Ratones , Ratones Noqueados , Especificidad de Órganos/genética , Especificidad de Órganos/inmunología , Receptor de Muerte Celular Programada 1/genética , Factores de Tiempo
7.
J Virol ; 95(19): e0056621, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34260270

RESUMEN

Cytotoxic CD4 T lymphocytes (CD4-CTL) are important in antiviral immunity. For example, we have previously shown that in mice, CD4-CTL are important to control ectromelia virus (ECTV) infection. How viral infections induce CD4-CTL responses remains incompletely understood. We demonstrate here that not only ECTV but also vaccinia virus and lymphocytic choriomeningitis virus induce CD4-CTL, though the response to ECTV is stronger. Using ECTV, we also demonstrate that in contrast to CD8-CTL, CD4-CTL differentiation requires constant virus replication and ceases once the virus is controlled. We also show that major histocompatibility complex class II molecules on CD11c+ cells are required for CD4-CTL differentiation and for mousepox resistance. Transcriptional analysis indicated that antiviral CD4-CTL and noncytolytic T helper 1 (Th1) CD4 T cells have similar transcriptional profiles, suggesting that CD4-CTL are terminally differentiated classical Th1 cells. Interestingly, CD4-CTL and classical Th1 cells expressed similar mRNA levels of the transcription factors ThPOK and GATA-3, necessary for CD4 T cell linage commitment, and Runx3, required for CD8 T cell development and effector function. However, at the protein level, CD4-CTL had higher levels of the three transcription factors, suggesting that further posttranscriptional regulation is required for CD4-CTL differentiation. Finally, CRISPR/Cas9-mediated deletion of Runx3 in CD4 T cells inhibited CD4-CTL but not classical Th1 cell differentiation in response to ECTV infection. These results further our understanding of the mechanisms of CD4-CTL differentiation during viral infection and the role of posttranscriptionally regulated Runx3 in this process. IMPORTANCE While it is well established that cytotoxic CD4 T cells (CD4-CTLs) directly contribute to viral clearance, it remains unclear how CD4-CTL are induced. We now show that CD4-CTLs require sustained antigen presentation and are induced by CD11c-expressing antigen-presenting cells. Moreover, we show that CD4-CTLs are derived from the terminal differentiation of classical T helper 1 (Th1) subset of CD4 cells. Compared to Th1 cells, CD4-CTLs upregulate protein levels of the transcription factors ThPOK, Runx3, and GATA-3 posttranscriptionally. Deletion of Runx3 in differentiated CD4 T cells prevents induction of CD4-CTLs but not classical Th1 cells. These results advance our knowledge of how CD4-CTLs are induced during viral infection.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Ectromelia Infecciosa/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T Citotóxicos/inmunología , Células TH1/inmunología , Virosis/inmunología , Animales , Células Presentadoras de Antígenos/inmunología , Antígenos CD11/análisis , Linfocitos T CD4-Positivos/metabolismo , Diferenciación Celular , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Citotoxicidad Inmunológica , Virus de la Ectromelia/fisiología , Ectromelia Infecciosa/virología , Antígenos de Histocompatibilidad Clase II/análisis , Hígado/inmunología , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Bazo/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T Citotóxicos/metabolismo , Células TH1/metabolismo , Transcriptoma , Replicación Viral
9.
PLoS Pathog ; 17(1): e1009255, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33508041

RESUMEN

Cytomegalovirus (CMV) causes clinically important diseases in immune compromised and immune immature individuals. Based largely on work in the mouse model of murine (M)CMV, there is a consensus that myeloid cells are important for disseminating CMV from the site of infection. In theory, such dissemination should expose CMV to cell-mediated immunity and thus necessitate evasion of T cells and NK cells. However, this hypothesis remains untested. We constructed a recombinant MCMV encoding target sites for the hematopoietic specific miRNA miR-142-3p in the essential viral gene IE3. This virus disseminated poorly to the salivary gland following intranasal or footpad infections but not following intraperitoneal infection in C57BL/6 mice, demonstrating that dissemination by hematopoietic cells is essential for specific routes of infection. Remarkably, depletion of NK cells or T cells restored dissemination of this virus in C57BL/6 mice after intranasal infection, while dissemination occurred normally in BALB/c mice, which lack strong NK cell control of MCMV. These data show that cell-mediated immunity is responsible for restricting MCMV to hematopoietic cell-mediated dissemination. Infected hematopoietic cells avoided cell-mediated immunity via three immune evasion genes that modulate class I MHC and NKG2D ligands (m04, m06 and m152). MCMV lacking these 3 genes spread poorly to the salivary gland unless NK cells were depleted, but also failed to replicate persistently in either the nasal mucosa or salivary gland unless CD8+ T cells were depleted. Surprisingly, CD8+ T cells primed after intranasal infection required CD4+ T cell help to expand and become functional. Together, our data suggest that MCMV can use both hematopoietic cell-dependent and -independent means of dissemination after intranasal infection and that cell mediated immune responses restrict dissemination to infected hematopoietic cells, which are protected from NK cells during dissemination by viral immune evasion. In contrast, viral replication within mucosal tissues depends on evasion of T cells.


Asunto(s)
Infecciones por Herpesviridae/inmunología , Evasión Inmune , Inmunidad Celular , Muromegalovirus/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Células Madre Hematopoyéticas/inmunología , Células Madre Hematopoyéticas/virología , Infecciones por Herpesviridae/virología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/virología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Muromegalovirus/genética , Muromegalovirus/fisiología , Replicación Viral
10.
Healthc (Amst) ; 9(1): 100460, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33412439

RESUMEN

BACKGROUND: Medicare's accountable care organizations (ACOs)-designed to improve quality and lower spending-were associated with growing savings in previous studies. However, savings estimates may be biased by beneficiary sorting among providers based on healthcare needs and by providers opting into the program based on anticipated gains. METHODS: Using Medicare administrative claims (2009-2014), we compared annual spending changes after provider organizations joined ACOs to changes in non-ACOs (controls). To address provider selection, using novel data to identify non-ACO organizations, we restricted controls to comparably large provider organizations. To address beneficiary selection, we (a) estimated within-organization (including non-ACO comparison organizations) spending changes, (b) estimated within-beneficiary spending changes, (c) incorporated beneficiaries without qualifying healthcare expenses, and (d) used a fixed beneficiary ACO assignment using the pre-ACO period. RESULTS: Each year, 19% of Medicare beneficiaries switched provider organizations. Spending was higher for switchers than stayers ($3163, p < .001) and grew more the next year ($2004; p < .001). Starting from a baseline regression modeled on previous ACO evaluations, estimated savings varied widely as we sequentially introduced methods to address selection. Combining methods, however, generated more stable estimated ACO savings of $46 (p = .022), averaged across cohorts. CONCLUSIONS: When implementing a comprehensive suite of methods to adjust for provider and beneficiary selection, we estimated ACO savings that grew over time. Our estimates are in line with, but smaller than, previous estimates in the literature. Implementing piecemeal adjustments produced misleading results. IMPLICATIONS: Our results confirm the importance of selection for savings estimates and for provider organizations managing costs and quality. Attribution rules that consider multiple years may help mitigate the impact of beneficiary churn for providers and payers. Implementing payment reform by randomizing early participants, or implementing fully across selected markets, may better serve efforts to evaluate and improve payment models. LEVEL OF EVIDENCE: Level 3.


Asunto(s)
Organizaciones Responsables por la Atención , Medicare , Anciano , Ahorro de Costo , Gastos en Salud , Humanos , Estados Unidos
11.
Health Aff (Millwood) ; 39(9): 1633-1642, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32701395

RESUMEN

A widely accessible vaccine is essential to mitigate the health and economic ravages of coronavirus disease 2019 (COVID-19). Without appropriate incentives and coordination, however, firms might not respond at sufficient speed or scale, and competition among countries for limited supply could drive up prices and undercut efficient allocation. Programs relying on "push" incentives (direct cost reimbursement) can be complicated by the funder's inability to observe firms' private cost information. To address these challenges, we propose a "pull" program that incentivizes late-stage development (Phase III trials and manufacturing) for COVID-19 vaccines by awarding advance purchase agreements to bidding firms. Using novel cost and demand data, we calculated the optimal size and number of awards. In baseline simulations, the optimal program induced the participation of virtually all ten viable vaccine candidates, spending an average of $110 billion to generate net benefits of $2.8 trillion-nearly double the net benefits generated by the free market.


Asunto(s)
Infecciones por Coronavirus/prevención & control , Administración Financiera/economía , Comercialización de los Servicios de Salud , Pandemias/prevención & control , Neumonía Viral/prevención & control , Vacunas Virales/economía , Vacunas Virales/farmacología , COVID-19 , Infecciones por Coronavirus/epidemiología , Industria Farmacéutica , Femenino , Salud Global , Humanos , Masculino , Neumonía Viral/epidemiología
12.
J Immunol ; 204(11): 2961-2972, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32284333

RESUMEN

CMV has been proposed to play a role in cancer progression and invasiveness. However, CMV has been increasingly studied as a cancer vaccine vector, and multiple groups, including ours, have reported that the virus can drive antitumor immunity in certain models. Our previous work revealed that intratumoral injections of wild-type murine CMV (MCMV) into B16-F0 melanomas caused tumor growth delay in part by using a viral chemokine to recruit macrophages that were subsequently infected. We now show that MCMV acts as a STING agonist in the tumor. MCMV infection of tumors in STING-deficient mice resulted in normal recruitment of macrophages to the tumor, but poor recruitment of CD8+ T cells, reduced production of inflammatory cytokines and chemokines, and no delay in tumor growth. In vitro, expression of type I IFN was dependent on both STING and the type I IFNR. Moreover, type I IFN alone was sufficient to induce cytokine and chemokine production by macrophages and B16 tumor cells, suggesting that the major role for STING activation was to produce type I IFN. Critically, viral infection of wild-type macrophages alone was sufficient to restore tumor growth delay in STING-deficient animals. Overall, these data show that MCMV infection and sensing in tumor-associated macrophages through STING signaling is sufficient to promote antitumor immune responses in the B16-F0 melanoma model.


Asunto(s)
Infecciones por Herpesviridae/inmunología , Melanoma/inmunología , Proteínas de la Membrana/metabolismo , Muromegalovirus/fisiología , Neoplasias Cutáneas/inmunología , Macrófagos Asociados a Tumores/inmunología , Animales , Movimiento Celular , Modelos Animales de Enfermedad , Humanos , Inmunidad/genética , Interferón Tipo I/metabolismo , Melanoma/virología , Melanoma Experimental , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias Cutáneas/virología , Carga Tumoral , Microambiente Tumoral
13.
J Immunol ; 204(6): 1582-1591, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-32015010

RESUMEN

NK cells play an important role in antiviral resistance. The integrin α2, which dimerizes with integrin ß1, distinguishes NK cells from innate lymphoid cells 1 and other leukocytes. Despite its use as an NK cell marker, little is known about the role of α2ß1 in NK cell biology. In this study, we show that in mice α2ß1 deficiency does not alter the balance of NK cell/ innate lymphoid cell 1 generation and slightly decreases the number of NK cells in the bone marrow and spleen without affecting NK cell maturation. NK cells deficient in α2ß1 had no impairment at entering or distributing within the draining lymph node of ectromelia virus (ECTV)-infected mice or at becoming effectors but proliferated poorly in response to ECTV and did not increase in numbers following infection with mouse CMV (MCMV). Still, α2ß1-deficient NK cells efficiently protected from lethal mousepox and controlled MCMV titers in the spleen. Thus, α2ß1 is required for optimal NK cell proliferation but is dispensable for protection against ECTV and MCMV, two well-established models of viral infection in which NK cells are known to be important.


Asunto(s)
Ectromelia Infecciosa/inmunología , Infecciones por Herpesviridae/inmunología , Integrina alfa2beta1/metabolismo , Células Asesinas Naturales/inmunología , Animales , Recuento de Células , Proliferación Celular , Modelos Animales de Enfermedad , Virus de la Ectromelia/inmunología , Ectromelia Infecciosa/sangre , Ectromelia Infecciosa/virología , Femenino , Infecciones por Herpesviridae/sangre , Infecciones por Herpesviridae/virología , Humanos , Inmunidad Innata , Integrina alfa2beta1/inmunología , Células Asesinas Naturales/metabolismo , Masculino , Ratones , Muromegalovirus/inmunología , Replicación Viral/inmunología
14.
J Immunol ; 204(1): 112-121, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31818981

RESUMEN

CMV is an obligate and persistent intracellular pathogen that continually drives the production of highly differentiated virus-specific CD8+ T cells in an Ag-dependent manner, a phenomenon known as memory inflation. Extensive proliferation is required to generate and maintain inflationary CD8+ T cell populations, which are counterintuitively short-lived and typically exposed to limited amounts of Ag during the chronic phase of infection. An apparent discrepancy therefore exists between the magnitude of expansion and the requirement for ongoing immunogenic stimulation. To address this issue, we explored the clonal dynamics of memory inflation. First, we tracked congenically marked OT-I cell populations in recipient mice infected with murine CMV (MCMV) expressing the cognate Ag OVA. Irrespective of numerical dominance, stochastic expansions were observed in each population, such that dominant and subdominant OT-I cells were maintained at stable frequencies over time. Second, we characterized endogenous CD8+ T cell populations specific for two classic inflationary epitopes, M38 and IE3. Multiple clonotypes simultaneously underwent Ag-driven proliferation during latent infection with MCMV. In addition, the corresponding CD8+ T cell repertoires were stable over time and dominated by persistent clonotypes, many of which also occurred in more than one mouse. Collectively, these data suggest that stochastic encounters with Ag occur frequently enough to maintain oligoclonal populations of inflationary CD8+ T cells, despite intrinsic constraints on epitope display at individual sites of infection with MCMV.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Selección Clonal Mediada por Antígenos/inmunología , Memoria Inmunológica/inmunología , Muromegalovirus/inmunología , Animales , Proliferación Celular , Epítopos/inmunología , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ovalbúmina/inmunología
16.
J Virol ; 93(20)2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31375579

RESUMEN

Cytomegalovirus (CMV) is a ubiquitous betaherpesvirus that infects many different cell types. Human CMV (HCMV) has been found in several solid tumors, and it has been hypothesized that it may promote cellular transformation or exacerbate tumor growth. Paradoxically, in some experimental situations, murine CMV (MCMV) infection delays tumor growth. We previously showed that wild-type MCMV delayed the growth of poorly immunogenic B16 melanomas via an undefined mechanism. Here, we show that MCMV delayed the growth of these immunologically "cold" tumors by recruiting and modulating tumor-associated macrophages. Depletion of monocytic phagocytes with clodronate completely prevented MCMV from delaying tumor growth. Mechanistically, our data suggest that MCMV recruits new macrophages to the tumor via the virus-encoded chemokine MCK2, and viruses lacking this chemokine were unable to delay tumor growth. Moreover, MCMV infection of macrophages drove them toward a proinflammatory (M1)-like state. Importantly, adaptive immune responses were also necessary for MCMV to delay tumor growth as the effect was substantially blunted in Rag-deficient animals. However, viral spread was not needed and a spread-defective MCMV strain was equally effective. In most mice, the antitumor effect of MCMV was transient. Although the recruited macrophages persisted, tumor regrowth correlated with a loss of viral activity in the tumor. However, an additional round of MCMV infection further delayed tumor growth, suggesting that tumor growth delay was dependent on active viral infection. Together, our results suggest that MCMV infection delayed the growth of an immunologically cold tumor by recruiting and modulating macrophages in order to promote anti-tumor immune responses.IMPORTANCE Cytomegalovirus (CMV) is an exciting new platform for vaccines and cancer therapy. Although CMV may delay tumor growth in some settings, there is also evidence that CMV may promote cancer development and progression. Thus, defining the impact of CMV on tumors is critical. Using a mouse model of melanoma, we previously found that murine CMV (MCMV) delayed tumor growth and activated tumor-specific immunity although the mechanism was unclear. We now show that MCMV delayed tumor growth through a mechanism that required monocytic phagocytes and a viral chemokine that recruited macrophages to the tumor. Furthermore, MCMV infection altered the functional state of macrophages. Although the effects of MCMV on tumor growth were transient, we found that repeated MCMV injections sustained the antitumor effect, suggesting that active viral infection was needed. Thus, MCMV altered tumor growth by actively recruiting macrophages to the tumor, where they were modulated to promote antitumor immunity.


Asunto(s)
Infecciones por Citomegalovirus/complicaciones , Infecciones por Citomegalovirus/inmunología , Melanoma/inmunología , Melanoma/patología , Muromegalovirus/inmunología , Fagocitos/inmunología , Fagocitos/patología , Animales , Melanoma/complicaciones , Melanoma/mortalidad , Melanoma Experimental , Ratones , Ratones Noqueados , Monocitos/inmunología , Monocitos/metabolismo , Monocitos/patología , Tasa de Supervivencia , Carga Tumoral
17.
Vaccines (Basel) ; 7(3)2019 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-31323930

RESUMEN

Cytomegalovirus (CMV) is a herpesvirus that establishes a persistent, but generally asymptomatic, infection in most people in the world. However, CMV drives and sustains extremely large numbers of antigen-specific T cells and is, therefore, emerging as an exciting platform for vaccines against infectious diseases and cancer. Indeed, pre-clinical data strongly suggest that CMV-based vaccines can sustain protective CD8+ T cell and antibody responses. In the context of vaccines for infectious diseases, substantial pre-clinical studies have elucidated the efficacy and protective mechanisms of CMV-based vaccines, including in non-human primate models of various infections. In the context of cancer vaccines, however, much less is known and only very early studies in mice have been conducted. To develop CMV-based cancer vaccines further, it will be critical to better understand the complex interaction of CMV and cancer. An array of evidence suggests that naturally-acquired human (H)CMV can be detected in cancers, and it has been proposed that HCMV may promote tumor growth. This would obviously be a concern for any therapeutic cancer vaccines. In experimental models, CMV has been shown to play both positive and negative roles in tumor progression, depending on the model studied. However, the mechanisms are still largely unknown. Thus, more studies assessing the interaction of CMV with the tumor microenvironment are needed. This review will summarize the existing literature and major open questions about CMV-based vaccines for cancer, and discuss our hypothesis that the balance between pro-tumor and anti-tumor effects driven by CMV depends on the location and the activity of the virus in the lesion.

18.
Mol Cancer Res ; 17(9): 1893-1909, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31239287

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is comprised of metabolically linked distinct compartments. Cancer-associated fibroblasts (CAF) and nonproliferative carcinoma cells display a glycolytic metabolism, while proliferative carcinoma cells rely on mitochondrial oxidative metabolism fueled by the catabolites provided by the adjacent CAFs. Metabolic coupling between these reprogrammed compartments contributes to HNSCC aggressiveness. In this study, we examined the effects of cigarette smoke-exposed CAFs on metabolic coupling and tumor aggressiveness of HNSCC. Cigarette smoke (CS) extract was generated by dissolving cigarette smoke in growth media. Fibroblasts were cultured in CS or control media. HNSCC cells were cocultured in vitro and coinjected in vivo with CS or control fibroblasts. We found that CS induced oxidative stress, glycolytic flux and MCT4 expression, and senescence in fibroblasts. MCT4 upregulation was critical for fibroblast viability under CS conditions. The effects of CS on fibroblasts were abrogated by antioxidant treatment. Coculture of carcinoma cells with CS fibroblasts induced metabolic coupling with upregulation of the marker of glycolysis MCT4 in fibroblasts and markers of mitochondrial metabolism MCT1 and TOMM20 in carcinoma cells. CS fibroblasts increased CCL2 expression and macrophage migration. Coculture with CS fibroblasts also increased two features of carcinoma cell aggressiveness: resistance to cell death and enhanced cell migration. Coinjection of carcinoma cells with CS fibroblasts generated larger tumors with reduced apoptosis than control coinjections, and upregulation of MCT4 by CS exposure was a driver of these effects. We demonstrate that a tumor microenvironment exposed to CS is sufficient to modulate metabolism and cancer aggressiveness in HNSCC. IMPLICATIONS: CS shifts cancer stroma toward glycolysis and induces head and neck cancer aggressiveness with a mitochondrial profile linked by catabolite transporters and oxidative stress. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/17/9/1893/F1.large.jpg.


Asunto(s)
Fumar Cigarrillos/efectos adversos , Neoplasias de Cabeza y Cuello/patología , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Regulación hacia Arriba , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Fibroblastos Asociados al Cáncer/metabolismo , Línea Celular Tumoral , Técnicas de Cocultivo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucólisis/efectos de los fármacos , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/metabolismo , Humanos , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/efectos de los fármacos , Células Madre Embrionarias de Ratones/metabolismo , Trasplante de Neoplasias , Estrés Oxidativo/efectos de los fármacos , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal/efectos de los fármacos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Microambiente Tumoral/efectos de los fármacos
19.
Med Microbiol Immunol ; 208(3-4): 457-468, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30848361

RESUMEN

Natural transmission of cytomegalovirus (CMV) has been difficult to observe. However, recent work using the mouse model of murine (M)CMV demonstrated that MCMV initially infects the nasal mucosa after transmission from mothers to pups. We found that intranasal (i.n.) inoculation of C57BL/6J mice resulted in reliable recovery of replicating virus from the nasal mucosa as assessed by plaque assay. After i.n. inoculation, CD8+ T-cell priming occurred in the mandibular, deep-cervical, and mediastinal lymph nodes within 3 days of infection. Although i.n. infection induced "memory inflation" of T cells specific for the M38316-323 epitope, there were no detectable CD8+ T-cell responses against the late-appearing IE3416-423 epitope, which contrasts with intraperitoneal (i.p.) infection. MCMV-specific T cells migrated into the nasal mucosa where they developed a tissue-resident memory (TRM) phenotype and this could occur independently of local virus infection or antigen. Strikingly however, virus replication was poorly controlled in the nasal mucosa and MCMV was detectable by plaque assay for at least 4 months after primary infection, making the nasal mucosa a second site for MCMV persistence. Unlike in the salivary glands, the persistence of MCMV in the nasal mucosa was not modulated by IL-10. Taken together, our data characterize the development of local and systemic T-cell responses after intranasal infection by MCMV and define the nasal mucosa, a natural site of viral entry, as a novel site of viral persistence.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Muromegalovirus/crecimiento & desarrollo , Muromegalovirus/inmunología , Mucosa Nasal/inmunología , Mucosa Nasal/virología , Linfocitos T/inmunología , Replicación Viral , Animales , Modelos Animales de Enfermedad , Inmunidad Celular , Ratones Endogámicos C57BL
20.
PLoS Pathog ; 14(10): e1007405, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30379932

RESUMEN

The sepsis-induced cytokine storm leads to severe lymphopenia and reduced effector capacity of remaining/surviving cells. This results in a prolonged state of immunoparalysis, that contributes to enhanced morbidity/mortality of sepsis survivors upon secondary infection. The impact of sepsis on several lymphoid subsets has been characterized, yet its impact on NK-cells remains underappreciated-despite their critical role in controlling infection(s). Here, we observed numerical loss of NK-cells in multiple tissues after cecal-ligation-and-puncture (CLP)-induced sepsis. To elucidate the sepsis-induced lesions in surviving NK-cells, transcriptional profiles were evaluated and indicated changes consistent with impaired effector functionality. A corresponding deficit in NK-cell capacity to produce effector molecules following secondary infection and/or cytokine stimulation (IL-12,IL-18) further suggested a sepsis-induced NK-cell intrinsic impairment. To specifically probe NK-cell receptor-mediated function, the activating Ly49H receptor, that recognizes the murine cytomegalovirus (MCMV) m157 protein, served as a model receptor. Although relative expression of Ly49H receptor did not change, the number of Ly49H+ NK-cells in CLP hosts was reduced leading to impaired in vivo cytotoxicity and the capacity of NK-cells (on per-cell basis) to perform Ly49H-mediated degranulation, killing, and effector molecule production in vitro was also severely reduced. Mechanistically, Ly49H adaptor protein (DAP12) activation and clustering, assessed by TIRF microscopy, was compromised. This was further associated with diminished AKT phosphorylation and capacity to flux calcium following receptor stimulation. Importantly, DAP12 overexpression in NK-cells restored Ly49H/D receptors-mediated effector functions in CLP hosts. Finally, as a consequence of sepsis-dependent numerical and functional lesions in Ly49H+ NK-cells, host capacity to control MCMV infection was significantly impaired. Importantly, IL-2 complex (IL-2c) therapy after CLP improved numbers but not a function of NK-cells leading to enhanced immunity to MCMV challenge. Thus, the sepsis-induced immunoparalysis state includes numerical and NK-cell-intrinsic functional impairments, an instructive notion for future studies aimed in restoring NK-cell immunity in sepsis survivors.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Inmunidad Celular/inmunología , Células Asesinas Naturales/inmunología , Muromegalovirus/inmunología , Subfamilia A de Receptores Similares a Lectina de Células NK/metabolismo , Sepsis/inmunología , Animales , Células Cultivadas , Citocinas/metabolismo , Infecciones por Citomegalovirus/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Perforina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...