Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Vet Diagn Invest ; 35(6): 761-765, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37705293

RESUMEN

We describe here a novel peeling skin condition (PSC) in 2 neonatal Pacific walruses (Odobenus rosmarus subsp. divergens). Macroscopically, calves had various degrees of peeling skin exacerbated by mechanical trauma. Lesions occurred in areas subject to friction: ventrum, fore- and hindflippers, and associated joints. Histopathologic features included pseudocarcinomatous epithelial hyperplasia with orthokeratotic hyperkeratosis. Bacterial cocci were present within the stratum corneum. A few intraepidermal clefts were present. Inflammation, epidermolysis, and vasculopathies were not observed. PCR assays were negative for vesivirus and for Staphylococcus aureus exfoliative and toxic shock syndrome toxins. Tissue samples were cultured and bacteria isolated and identified by MALDI-TOF MS as Carnobacterium maltaromaticum, Psychrobacter phenylpyruvicus, Globicatella sanguinis, Streptococcus phocae, Pseudomonas spp., Rahnella aquatilis, and Escherichia coli. Given the young age of the calves and their clinical presentation, congenital ichthyosis was suspected. No genetic differences were detected for sequenced portions of keratin genes (keratin gene K10) between diseased and normal walrus skin. This rare PSC in neonatal Pacific walruses is recognized as novel by indigenous Alaskan marine mammal hunters of the Bering Strait region. A comprehensive diagnostic work-up of future case materials is needed to characterize the underlying biochemical defect(s).


Asunto(s)
Infecciones Estafilocócicas , Morsas , Animales , Alaska , Infecciones Estafilocócicas/veterinaria , Queratinas
2.
Harmful Algae ; 114: 102205, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35550288

RESUMEN

Climate change-related ocean warming and reduction in Arctic sea ice extent, duration and thickness increase the risk of toxic blooms of the dinoflagellate Alexandrium catenella in the Alaskan Arctic. This algal species produces neurotoxins that impact marine wildlife health and cause the human illness known as paralytic shellfish poisoning (PSP). This study reports Paralytic Shellfish Toxin (PST) concentrations quantified in Arctic food web samples that include phytoplankton, zooplankton, benthic clams, benthic worms, and pelagic fish collected throughout summer 2019 during anomalously warm ocean conditions. PSTs (saxitoxin equivalents, STX eq.) were detected in all trophic levels with concentrations above the seafood safety regulatory limit (80 µg STX eq. 100 g-1) in benthic clams collected offshore on the continental shelf in the Beaufort, Chukchi, and Bering Seas. Most notably, toxic benthic clams (Macoma calcarea) were found north of Saint Lawrence Island where Pacific walruses (Odobenus rosmarus) are known to forage for a variety of benthic species, including Macoma. Additionally, fecal samples collected from 13 walruses harvested for subsistence purposes near Saint Lawrence Island during March to May 2019, all contained detectable levels of STX, with fecal samples from two animals (78 and 72 µg STX eq. 100 g-1) near the seafood safety regulatory limit. In contrast, 64% of fecal samples from zooplankton-feeding bowhead whales (n = 9) harvested between March and September 2019 in coastal waters of the Beaufort Sea near Utqiagvik (formerly Barrow) and Kaktovik were toxin-positive, and those levels were significantly lower than in walruses (max bowhead 8.5 µg STX eq. 100 g-1). This was consistent with the lower concentrations of PSTs found in regional zooplankton prey. Maximum ecologically-relevant daily toxin doses to walruses feeding on clams and bowhead whales feeding on zooplankton were estimated to be 21.5 and 0.7 µg STX eq. kg body weight-1 day-1, respectively, suggesting that walruses had higher PST exposures than bowhead whales. Average and maximum STX doses in walruses were in the range reported previously to cause illness and/or death in humans and humpback whales, while bowhead whale doses were well below those levels. These findings raise concerns regarding potential increases in PST/STX exposure risks and health impacts to Arctic marine mammals as ocean warming and sea ice reduction continue.


Asunto(s)
Bivalvos , Ballena de Groenlandia , Dinoflagelados , Animales , Cadena Alimentaria , Océanos y Mares , Saxitoxina , Mariscos , Morsas , Zooplancton
3.
Harmful Algae ; 55: 13-24, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-28073526

RESUMEN

Current climate trends resulting in rapid declines in sea ice and increasing water temperatures are likely to expand the northern geographic range and duration of favorable conditions for harmful algal blooms (HABs), making algal toxins a growing concern in Alaskan marine food webs. Two of the most common HAB toxins along the west coast of North America are the neurotoxins domoic acid (DA) and saxitoxin (STX). Over the last 20 years, DA toxicosis has caused significant illness and mortality in marine mammals along the west coast of the USA, but has not been reported to impact marine mammals foraging in Alaskan waters. Saxitoxin, the most potent of the paralytic shellfish poisoning toxins, has been well-documented in shellfish in the Aleutians and Gulf of Alaska for decades and associated with human illnesses and deaths due to consumption of toxic clams. There is little information regarding exposure of Alaskan marine mammals. Here, the spatial patterns and prevalence of DA and STX exposure in Alaskan marine mammals are documented in order to assess health risks to northern populations including those species that are important to the nutritional, cultural, and economic well-being of Alaskan coastal communities. In this study, 905 marine mammals from 13 species were sampled including; humpback whales, bowhead whales, beluga whales, harbor porpoises, northern fur seals, Steller sea lions, harbor seals, ringed seals, bearded seals, spotted seals, ribbon seals, Pacific walruses, and northern sea otters. Domoic acid was detected in all 13 species examined and had the greatest prevalence in bowhead whales (68%) and harbor seals (67%). Saxitoxin was detected in 10 of the 13 species, with the highest prevalence in humpback whales (50%) and bowhead whales (32%). Pacific walruses contained the highest concentrations of both STX and DA, with DA concentrations similar to those detected in California sea lions exhibiting clinical signs of DA toxicosis (seizures) off the coast of Central California, USA. Forty-six individual marine mammals contained detectable concentrations of both toxins emphasizing the potential for combined exposure risks. Additionally, fetuses from a beluga whale, a harbor porpoise and a Steller sea lion contained detectable concentrations of DA documenting maternal toxin transfer in these species. These results provide evidence that HAB toxins are present throughout Alaska waters at levels high enough to be detected in marine mammals and have the potential to impact marine mammal health in the Arctic marine environment.


Asunto(s)
Organismos Acuáticos/metabolismo , Caniformia/metabolismo , Cetáceos/metabolismo , Monitoreo del Ambiente , Toxinas Marinas/análisis , Alaska , Animales , Regiones Árticas , California , Prevalencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA