Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(37): eabn1731, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36112676

RESUMEN

Voltage-gated K+ (Kv) channels mediate the flow of K+ across the cell membrane by regulating the conductive state of their activation gate (AG). Several Kv channels display slow C-type inactivation, a process whereby their selectivity filter (SF) becomes less or nonconductive. It has been proposed that, in the fast inactivation-removed Shaker-IR channel, the W434F mutation epitomizes the C-type inactivated state because it functionally accelerates this process. By introducing another pore mutation that prevents AG closure, P475D, we found a way to record ionic currents of the Shaker-IR-W434F-P475D mutant at hyperpolarized membrane potentials as the W434F-mutant SF recovers from its inactivated state. This W434F conductive state lost its high K+ over Na+ selectivity, and even NMDG+ can permeate, features not observed in a wild-type SF. This indicates that, at least during recovery from inactivation, the W434F-mutant SF transitions to a widened and noncationic specific conformation.

2.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34948051

RESUMEN

G protein-coupled receptors (GPCRs) have emerged as key players in regulating (patho)physiological processes, including inflammation. Members of the Mas-related G protein coupled receptors (MRGPRs), a subfamily of GPCRs, are largely expressed by sensory neurons and known to modulate itch and pain. Several members of MRGPRs are also expressed in mast cells, macrophages, and in cardiovascular tissue, linking them to pseudo-allergic drug reactions and suggesting a pivotal role in the cardiovascular system. However, involvement of the human Mas-related G-protein coupled receptor D (MRGPRD) in the regulation of the inflammatory mediator interleukin 6 (IL-6) has not been demonstrated to date. By stimulating human MRGPRD-expressing HeLa cells with the agonist ß-alanine, we observed a release of IL-6. ß-alanine-induced signaling through MRGPRD was investigated further by probing downstream signaling effectors along the Gαq/Phospholipase C (PLC) pathway, which results in an IkB kinases (IKK)-mediated canonical activation of nuclear factor kappa-B (NF-κB) and stimulation of IL-6 release. This IL-6 release could be blocked by a Gαq inhibitor (YM-254890), an IKK complex inhibitor (IKK-16), and partly by a PLC inhibitor (U-73122). Additionally, we investigated the constitutive (ligand-independent) and basal activity of MRGPRD and concluded that the observed basal activity of MRGPRD is dependent on the presence of fetal bovine serum (FBS) in the culture medium. Consequently, the dynamic range for IL-6 detection as an assay for ß-alanine-mediated activation of MRGPRD is substantially increased by culturing the cells in FBS free medium before treatment. Overall, the observation that MRGPRD mediates the release of IL-6 in an in vitro system, hints at a role as an inflammatory mediator and supports the notion that IL-6 can be used as a marker for MRGPRD activation in an in vitro drug screening assay.


Asunto(s)
Interleucina-6/metabolismo , FN-kappa B/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , beta-Alanina/farmacología , Animales , Estrenos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Células HeLa , Humanos , Péptidos Cíclicos/farmacología , Pirrolidinonas/farmacología , Receptores Acoplados a Proteínas G/agonistas , Transducción de Señal/efectos de los fármacos
3.
Channels (Austin) ; 15(1): 239-252, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33465001

RESUMEN

Human-induced pluripotent stem cell (hiPSC) and stem cell (hSC) derived cardiomyocytes (CM) are gaining popularity as in vitro model for cardiology and pharmacology studies. A remaining flaw of these cells, as shown by single-cell electrophysiological characterization, is a more depolarized resting membrane potential (RMP) compared to native CM. Most reports attribute this to a lower expression of the Kir2.1 potassium channel that generates the IK1 current. However, most RMP recordings are obtained from isolated hSC/hiPSC-CMs whereas in a more native setting these cells are interconnected with neighboring cells by connexin-based gap junctions, forming a syncytium. Hereby, these cells are electrically connected and the total pool of IK1 increases. Therefore, the input resistance (Ri) of interconnected cells is lower than that of isolated cells. During patch clamp experiments pipettes need to be well attached or sealed to the cell, which is reflected in the seal resistance (Rs), because a nonspecific ionic current can leak through this pipette-cell contact or seal and balance out small currents within the cell such as IK1. By recording the action potential of isolated hSC-CMs and that of hSC-CMs cultured in small monolayers, we show that the RMP of hSC-CMs in monolayer is approximately -20 mV more hyperpolarized compared to isolated cells. Accordingly, adding carbenoxolone, a connexin channel blocker, isolates the cell that is patch clamped from its neighboring cells of the monolayer and depolarizes the RMP. The presented data show that the recorded RMP of hSC-CMs in a syncytium is more negative than that determined from isolated hSC/hiPSC-CMs, most likely because the active pool of Kir2.1 channels increased.


Asunto(s)
Miocitos Cardíacos , Células Gigantes , Potenciales de la Membrana , Técnicas de Placa-Clamp , Potasio
5.
Front Pharmacol ; 11: 735, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32499709

RESUMEN

In the Nav channel family the lipophilic drugs/toxins binding sites and the presence of fenestrations in the channel pore wall are well defined and categorized. No such classification exists in the much larger Kv channel family, although certain lipophilic compounds seem to deviate from binding to well-known hydrophilic binding sites. By mapping different compound binding sites onto 3D structures of Kv channels, there appear to be three distinct lipid-exposed binding sites preserved in Kv channels: the front and back side of the pore domain, and S2-S3/S3-S4 clefts. One or a combination of these sites is most likely the orthologous equivalent of neurotoxin site 5 in Nav channels. This review describes the different lipophilic binding sites and location of pore wall fenestrations within the Kv channel family and compares it to the knowledge of Nav channels.

6.
Biophys J ; 118(10): 2612-2620, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32365329

RESUMEN

Voltage-gated potassium (Kv) channels display several types of inactivation processes, including N-, C-, and U-types. C-type inactivation is attributed to a nonconductive conformation of the selectivity filter (SF). It has been proposed that the activation gate and the channel's SF are allosterically coupled because the conformational changes of the former affect the structure of the latter and vice versa. The second threonine of the SF signature sequence (e.g., TTVGYG) has been proven to be essential for this allosteric coupling. To further study the role of the SF in U-type inactivation, we substituted the second threonine of the TTVGYG sequence by an alanine in the hKv2.1 and hKv3.1 channels, which are known to display U-type inactivation. Both hKv2.1-T377A and hKv3.1-T400A yielded channels that were resistant to inactivation, and as a result, they displayed noninactivating currents upon channel opening; i.e., hKv2.1-T377A and hKv3.1-T400A remained fully conductive upon prolonged moderate depolarizations, whereas in wild-type hKv2.1 and hKv3.1, the current amplitude typically reduces because of U-type inactivation. Interestingly, increasing the extracellular K+ concentration increased the macroscopic current amplitude of both hKv2.1-T377A and hKv3.1-T400A, which is similar to the response of the homologous T to A mutation in Shaker and hKv1.5 channels that display C-type inactivation. Our data support an important role for the second threonine of the SF signature sequence in the U-type inactivation gating of hKv2.1 and hKv3.1.


Asunto(s)
Canales de Potasio con Entrada de Voltaje , Canales de Potasio , Activación del Canal Iónico , Potasio/metabolismo , Bloqueadores de los Canales de Potasio , Canales de Potasio/metabolismo
7.
Proc Natl Acad Sci U S A ; 117(17): 9365-9376, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32284408

RESUMEN

The electrically silent (KvS) members of the voltage-gated potassium (Kv) subfamilies Kv5, Kv6, Kv8, and Kv9 selectively modulate Kv2 subunits by forming heterotetrameric Kv2/KvS channels. Based on the reported 3:1 stoichiometry of Kv2.1/Kv9.3 channels, we tested the hypothesis that Kv2.1/Kv6.4 channels express, in contrast to the assumed 3:1, in a 2:2 stoichiometry. We investigate the Kv2.1/Kv6.4 stoichiometry using single subunit counting and functional characterization of tetrameric concatemers. For selecting the most probable stoichiometry, we introduce a model-selection method that is applicable for any multimeric complex by investigating the stoichiometry of Kv2.1/Kv6.4 channels. Weighted likelihood calculations bring rigor to a powerful technique. Using the weighted-likelihood model-selection method and analysis of electrophysiological data, we show that Kv2.1/Kv6.4 channels express, in contrast to the assumed 3:1, in a 2:2 stoichiometry. Within this stoichiometry, the Kv6.4 subunits have to be positioned alternating with Kv2.1 to express functional channels. The variability in Kv2/KvS assembly increases the diversity of heterotetrameric configurations and extends the regulatory possibilities of KvS by allowing the presence of more than one silent subunit.


Asunto(s)
Canales de Potasio con Entrada de Voltaje/metabolismo , Potasio/metabolismo , Canales de Potasio Shab/metabolismo , Animales , Anticuerpos , Línea Celular , Fibroblastos , Regulación de la Expresión Génica , Células HEK293 , Humanos , Potenciales de la Membrana , Ratones , Oocitos/metabolismo , Fotoblanqueo , Canales de Potasio con Entrada de Voltaje/genética , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Recombinantes , Canales de Potasio Shab/genética , Canales de Potasio Shab/inmunología , Xenopus
8.
Front Pharmacol ; 10: 1374, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31920633

RESUMEN

The cardiac Nav1.5 mediated sodium current (INa) generates the upstroke of the action potential in atrial and ventricular myocytes. Drugs that modulate this current can therefore be antiarrhythmic or proarrhythmic, which requires preclinical evaluation of their potential drug-induced inhibition or modulation of Nav1.5. Since Nav1.5 assembles with, and is modulated by, the auxiliary ß1-subunit, this subunit can also affect the channel's pharmacological response. To investigate this, the effect of known Nav1.5 inhibitors was compared between COS-7 cells expressing Nav1.5 or Nav1.5+ß1 using whole-cell voltage clamp experiments. For the open state class Ia blockers ajmaline and quinidine, and class Ic drug flecainide, the affinity did not differ between both models. For class Ib drugs phenytoin and lidocaine, which are inactivated state blockers, the affinity decreased more than a twofold when ß1 was present. Thus, ß1 did not influence the affinity for the class Ia and Ic compounds but it did so for the class Ib drugs. Human stem cell-derived cardiomyocytes (hSC-CMs) are a promising translational cell source for in vitro models that express a representative repertoire of channels and auxiliary proteins, including ß1. Therefore, we subsequently evaluated the same drugs for their response on the INa in hSC-CMs. Consequently, it was expected and confirmed that the drug response of INa in hSC-CMs compares best to INa expressed by Nav1.5+ß1.

9.
Sci Rep ; 7: 41646, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28139741

RESUMEN

Heterotetramer voltage-gated K+ (KV) channels KV2.1/KV6.4 display a gating charge-voltage (QV) distribution composed by two separate components. We use state dependent chemical accessibility to cysteines substituted in either KV2.1 or KV6.4 to assess the voltage sensor movements of each subunit. By comparing the voltage dependences of chemical modification and gating charge displacement, here we show that each gating charge component corresponds to a specific subunit forming the heterotetramer. The voltage sensors from KV6.4 subunits move at more negative potentials than the voltage sensors belonging to KV2.1 subunits. These results indicate that the voltage sensors from the tetrameric channels move independently. In addition, our data shows that 75% of the total charge is attributed to KV2.1, while 25% to KV6.4. Thus, the most parsimonious model for KV2.1/KV6.4 channels' stoichiometry is 3:1.


Asunto(s)
Activación del Canal Iónico , Multimerización de Proteína , Canales de Potasio Shab/química , Canales de Potasio Shab/metabolismo , Secuencia de Aminoácidos , Línea Celular , Células Cultivadas , Humanos , Potenciales de la Membrana , Subunidades de Proteína , Canales de Potasio Shab/genética
10.
Reprod Fertil Dev ; 29(8): 1567-1575, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27677211

RESUMEN

Electrically silent voltage-gated potassium (KvS) channel subunits (i.e. Kv5-Kv6 and Kv8-Kv9) do not form functional homotetrameric Kv channels, but co-assemble with Kv2 subunits, generating functional heterotetrameric Kv2--KvS channel complexes in which the KvS subunits modulate the Kv2 channel properties. Several KvS subunits are expressed in testis tissue but knowledge about their contribution to testis physiology is lacking. Here, we report that the targeted deletion of Kv6.4 in a transgenic mouse model (Kcng4-/-) causes male sterility as offspring from homozygous females were only obtained after mating with wild-type (WT) or heterozygous males. Semen quality analysis revealed that the sterility of the homozygous males was caused by a severe reduction in total sperm-cell count and the absence of motile spermatozoa in the semen. Furthermore, spermatozoa of homozygous mice showed an abnormal morphology characterised by a smaller head and a shorter tail compared with WT spermatozoa. Comparison of WT and Kcng4-/- testicular tissue indicated that this inability to produce (normal) spermatozoa was due to disturbed spermiogenesis. These results suggest that Kv6.4 subunits are involved in the regulation of the late stages of spermatogenesis, which makes them a potentially interesting pharmacological target for the development of non-hormonal male contraceptives.


Asunto(s)
Infertilidad Masculina/genética , Canales de Potasio con Entrada de Voltaje/genética , Espermatogénesis/genética , Espermatozoides/metabolismo , Testículo/metabolismo , Animales , Forma de la Célula/genética , Infertilidad Masculina/metabolismo , Masculino , Ratones , Ratones Noqueados , Canales de Potasio con Entrada de Voltaje/metabolismo , Análisis de Semen , Motilidad Espermática/genética , Espermatozoides/citología
11.
Sci Rep ; 6: 35080, 2016 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-27734968

RESUMEN

Enhancement of neuronal M-currents, generated through KV7.2-KV7.5 channels, has gained much interest for its potential in developing treatments for hyperexcitability-related disorders such as epilepsy. Retigabine, a KV7 channel opener, has proven to be an effective anticonvulsant and has recently also gained attention due to its neuroprotective properties. In the present study, we found that the auxiliary KCNE2 subunit reduced the KV7.2-KV7.3 retigabine sensitivity approximately 5-fold. In addition, using both mammalian expression systems and cultured hippocampal neurons we determined that low µM retigabine concentrations had 'off-target' effects on KV2.1 channels which have recently been implicated in apoptosis. Clinical retigabine concentrations (0.3-3 µM) inhibited KV2.1 channel function upon prolonged exposure. The suppression of the KV2.1 conductance was only partially reversible. Our results identified KV2.1 as a new molecular target for retigabine, thus giving a potential explanation for retigabine's neuroprotective properties.


Asunto(s)
Anticonvulsivantes/farmacología , Carbamatos/farmacología , Potenciales de la Membrana/efectos de los fármacos , Neuronas/efectos de los fármacos , Fenilendiaminas/farmacología , Canales de Potasio Shab/metabolismo , Animales , Línea Celular , Células HEK293 , Humanos , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/metabolismo , Neuronas/metabolismo , Ratas
12.
Toxicon ; 120: 57-60, 2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27475861

RESUMEN

The marine polycyclic-ether toxin gambierol and 1-butanol (n-alkanol) inhibit Shaker-type Kv channels by interfering with the gating machinery. Competition experiments indicated that both compounds do not share an overlapping binding site but gambierol is able to affect 1-butanol affinity for Shaker through an allosteric effect. Furthermore, the Shaker-P475A mutant, which inverses 1-butanol effect, is inhibited by gambierol with nM affinity. Thus, gambierol and 1-butanol inhibit Shaker-type Kv channels via distinct parts of the gating machinery.


Asunto(s)
1-Butanol/toxicidad , Ciguatoxinas/toxicidad , Bloqueadores de los Canales de Potasio/toxicidad , Canales de Potasio de la Superfamilia Shaker/antagonistas & inhibidores , Sitios de Unión , Activación del Canal Iónico
13.
Int J Biol Macromol ; 93(Pt A): 167-171, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27320844

RESUMEN

Voltage-gated potassium (Kv) channels form cells repolarizing power and are commonly expressed in excitable cells. In non-excitable cells, Kv channels such as Kv2.1 are involved in cell differentiation and growth. Due to the involvement of Kv2.1 in several physiological processes, these channels are promising therapeutic targets. To develop Kv2.1 specific antibody-based channel modulators, we applied a novel approach and immunized a dromedary with heterologous Ltk- cells that overexpress the mouse Kv2.1 channel instead of immunizing with channel protein fragments. The advantage of this approach is that the channel is presented in its native tetrameric configuration. Using a Cell-ELISA, we demonstrated the ability of the immune serum to detect Kv2.1 channels on the surface of cells that express the channel. Then, using a Patch Clamp electrophysiology assay we explored the capability of the dromedary serum in modulating Kv2.1 currents. Cells that were incubated for 3h with serum taken at Day 51 from the start of the immunization displayed a statistically significant 2-fold reduction in current density compared to control conditions as well as cells incubated with serum from Day 0. Here we show that an immunization approach with cells overexpressing the Kv2.1 channel yields immune serum with Kv2.1 specific antibodies.


Asunto(s)
Anticuerpos/sangre , Bloqueadores de los Canales de Potasio/sangre , Canales de Potasio Shab/inmunología , Animales , Anticuerpos/farmacología , Formación de Anticuerpos , Camelus , Línea Celular , Inmunización , Masculino , Ratones , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio Shab/antagonistas & inhibidores
14.
Physiol Rep ; 4(6)2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27033450

RESUMEN

Delayed rectifier voltage-gated K(+)(Kv) channels play an important role in the regulation of the electrophysiological properties of neurons. In mouse dorsal root ganglion (DRG) neurons, a large fraction of the delayed rectifier current is carried by both homotetrameric Kv2 channels and heterotetrameric channels consisting of Kv2 and silent Kv (KvS) subunits (i.e., Kv5-Kv6 and Kv8-Kv9). However, little is known about the contribution of Kv2-mediated currents during the postnatal development ofDRGneurons. Here, we report that the Stromatoxin-1 (ScTx)-sensitive fraction of the total outward K(+)current (IK) from mouseDRGneurons gradually decreased (~13%,P < 0.05) during the first month of postnatal development. Because ScTx inhibits both Kv2.1- and Kv2.2-mediated currents, this gradual decrease may reflect a decrease in currents containing either subunit. However, the fraction of Kv2.1 antibody-sensitive current that only reflects the Kv2.1-mediated currents remained constant during that same period. These results suggested that the fractional contribution of Kv2.2-mediated currents relative toIKdecreased with postnatal age. SemiquantitativeRT-PCRanalysis indicated that this decrease can be attributed to developmental changes in Kv2.2 expression as themRNAlevels of the Kv2.2 subunit decreased gradually between 1 and 4 weeks of age. In addition, we observed age-dependent fluctuations in themRNAlevels of the Kv6.3, Kv8.1, Kv9.1, and Kv9.3 subunits. These results support an important role of both Kv2 and KvS subunits in the postnatal maturation ofDRGneurons.


Asunto(s)
Ganglios Espinales/metabolismo , Neuronas/metabolismo , Potasio/metabolismo , Canales de Potasio Shab/metabolismo , Factores de Edad , Animales , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Activación del Canal Iónico , Masculino , Potenciales de la Membrana , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Péptidos/farmacología , Bloqueadores de los Canales de Potasio/farmacología , ARN Mensajero/metabolismo , Canales de Potasio Shab/antagonistas & inhibidores , Canales de Potasio Shab/genética , Venenos de Araña/farmacología
15.
Neuropharmacology ; 107: 160-167, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26956727

RESUMEN

Marine ladder-shaped polyether toxins are implicated in neurological symptoms of fish-borne food poisonings. The toxin gambierol, produced by the marine dinoflagellate Gambierdiscus toxicus, belongs to the group of ladder-shaped polyether toxins and inhibits Kv3.1 channels with nanomolar affinity through a mechanism of gating modification. Binding determinants for gambierol localize at the lipid-exposed interface of the pore forming S5 and S6 segments, suggesting that gambierol binds outside of the permeation pathway. To explore a possible involvement of the voltage-sensing domain (VSD), we made different chimeric channels between Kv3.1 and Kv2.1, exchanging distinct parts of the gating machinery. Our results showed that neither the electro-mechanical coupling nor the S1-S3a region of the VSD affect gambierol sensitivity. In contrast, the S3b-S4 part of the VSD (paddle motif) decreased gambierol sensitivity in Kv3.1 more than 100-fold. Structure determination by homology modeling indicated that the position of the S3b-S4 paddle and its primary structure defines the shape and∖or the accessibility of the binding site for gambierol, explaining the observed differences in gambierol affinity between the channel chimeras. Furthermore, these findings explain the observed difference in gambierol affinity for the closed and open channel configurations of Kv3.1, opening new possibilities for exploring the VSDs as selectivity determinants in drug design.


Asunto(s)
Ciguatoxinas/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio Shab/antagonistas & inhibidores , Canales de Potasio Shab/metabolismo , Canales de Potasio Shaw/antagonistas & inhibidores , Canales de Potasio Shaw/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Línea Celular , Relación Dosis-Respuesta a Droga , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Modelos Moleculares , Proteínas Mutantes Quiméricas , Técnicas de Placa-Clamp , Conformación Proteica , Canales de Potasio Shab/genética , Canales de Potasio Shaw/genética
16.
Sci Rep ; 5: 17402, 2015 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-26616025

RESUMEN

Alkanols are small aliphatic compounds that inhibit voltage-gated K(+) (K(v)) channels through a yet unresolved gating mechanism. K(v) channels detect changes in the membrane potential with their voltage-sensing domains (VSDs) that reorient and generate a transient gating current. Both 1-Butanol (1-BuOH) and 1-Hexanol (1-HeOH) inhibited the ionic currents of the Shaker K(v) channel in a concentration dependent manner with an IC50 value of approximately 50 mM and 3 mM, respectively. Using the non-conducting Shaker-W434F mutant, we found that both alkanols immobilized approximately 10% of the gating charge and accelerated the deactivating gating currents simultaneously with ionic current inhibition. Thus, alkanols prevent the final VSD movement(s) that is associated with channel gate opening. Applying 1-BuOH and 1-HeOH to the Shaker-P475A mutant, in which the final gating transition is isolated from earlier VSD movements, strengthened that neither alkanol affected the early VSD movements. Drug competition experiments showed that alkanols do not share the binding site of 4-aminopyridine, a drug that exerts a similar effect at the gating current level. Thus, alkanols inhibit Shaker-type K(v) channels via a unique gating modifying mechanism that stabilizes the channel in its non-conducting activated state.


Asunto(s)
Alcoholes/farmacología , Activación del Canal Iónico/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Canales de Potasio con Entrada de Voltaje/metabolismo , Animales , Sitios de Unión , Línea Celular , Hexanoles/farmacología , Humanos , Cinética , Potenciales de la Membrana/efectos de los fármacos , Mutación , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Canales de Potasio de la Superfamilia Shaker/antagonistas & inhibidores , Canales de Potasio de la Superfamilia Shaker/química , Canales de Potasio de la Superfamilia Shaker/genética , Canales de Potasio de la Superfamilia Shaker/metabolismo
17.
Nat Commun ; 6: 10173, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26673941

RESUMEN

High-frequency action potential (AP) transmission is essential for rapid information processing in the central nervous system. Voltage-dependent Kv3 channels play an important role in this process thanks to their high activation threshold and fast closure kinetics, which reduce the neuron's refractory period. However, premature Kv3 channel closure leads to incomplete membrane repolarization, preventing sustainable AP propagation. Here, we demonstrate that Kv3.1b channels solve this problem by producing resurgent K(+) currents during repolarization, thus ensuring enough repolarizing power to terminate each AP. Unlike previously described resurgent Na(+) and K(+) currents, Kv3.1b's resurgent current does not originate from recovery of channel block or inactivation but results from a unique combination of steep voltage-dependent gating kinetics and ultra-fast voltage-sensor relaxation. These distinct properties are readily transferrable onto an orthologue Kv channel by transplanting the voltage-sensor's S3-S4 loop, providing molecular insights into the mechanism by which Kv3 channels contribute to high-frequency AP transmission.


Asunto(s)
Potenciales de Acción/genética , Oocitos/metabolismo , Potasio/metabolismo , Canales de Potasio Shaw/genética , Animales , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Humanos , Cadenas de Markov , Modelos Moleculares , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas , Técnicas de Placa-Clamp , Canales de Potasio Shaw/metabolismo , Xenopus
18.
PLoS One ; 10(10): e0141349, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26505474

RESUMEN

The voltage-gated K+ (Kv) channel subunits Kv2.1 and Kv2.2 are expressed in almost every tissue. The diversity of Kv2 current is increased by interacting with the electrically silent Kv (KvS) subunits Kv5-Kv6 and Kv8-Kv9, into functional heterotetrameric Kv2/KvS channels. These Kv2/KvS channels possess unique biophysical properties and display a more tissue-specific expression pattern, making them more desirable pharmacological and therapeutic targets. However, little is known about the pharmacological properties of these heterotetrameric complexes. We demonstrate that Kv5.1, Kv8.1 and Kv9.3 currents were inhibited differently by the channel blocker 4-aminopyridine (4-AP) compared to Kv2.1 homotetramers. In contrast, Kv6.4 currents were potentiated by 4-AP while displaying moderately increased affinities for the channel pore blockers quinidine and flecainide. We found that the 4-AP induced potentiation of Kv6.4 currents was caused by modulation of the Kv6.4-mediated closed-state inactivation: suppression by 4-AP of the Kv2.1/Kv6.4 closed-state inactivation recovered a population of Kv2.1/Kv6.4 channels that was inactivated at resting conditions, i.e. at a holding potential of -80 mV. This modulation also resulted in a slower initiation and faster recovery from closed-state inactivation. Using chimeric substitutions between Kv6.4 and Kv9.3 subunits, we demonstrated that the lower half of the S6 domain (S6c) plays a crucial role in the 4-AP induced potentiation. These results demonstrate that KvS subunits modify the pharmacological response of Kv2 subunits when assembled in heterotetramers and illustrate the potential of KvS subunits to provide unique pharmacological properties to the heterotetramers, as is the case for 4-AP on Kv2.1/Kv6.4 channels.


Asunto(s)
4-Aminopiridina/química , Multimerización de Proteína/efectos de los fármacos , Subunidades de Proteína/química , Canales de Potasio Shab/química , 4-Aminopiridina/farmacología , Secuencias de Aminoácidos/genética , Animales , Línea Celular , Humanos , Potenciales de la Membrana/efectos de los fármacos , Ratones , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/genética , Prolina/química , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/genética , Canales de Potasio Shab/antagonistas & inhibidores , Canales de Potasio Shab/genética , Transfección
19.
PLoS One ; 9(6): e98960, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24901643

RESUMEN

The "silent" voltage-gated potassium (KvS) channel subunit Kv6.4 does not form electrically functional homotetramers at the plasma membrane but assembles with Kv2.1 subunits, generating functional Kv2.1/Kv6.4 heterotetramers. The N-terminal T1 domain determines the subfamily-specific assembly of Kv1-4 subunits by preventing interactions between subunits that belong to different subfamilies. For Kv6.4, yeast-two-hybrid experiments showed an interaction of the Kv6.4 N-terminus with the Kv2.1 N-terminus, but unexpectedly also with the Kv3.1 N-terminus. We confirmed this interaction by Fluorescence Resonance Energy Transfer (FRET) and co-immunoprecipitation (co-IP) using N-terminal Kv3.1 and Kv6.4 fragments. However, full-length Kv3.1 and Kv6.4 subunits do not form heterotetramers at the plasma membrane. Therefore, additional interactions between the Kv6.4 and Kv2.1 subunits should be important in the Kv2.1/Kv6.4 subfamily-specificity. Using FRET and co-IP approaches with N- and C-terminal fragments we observed that the Kv6.4 C-terminus physically interacts with the Kv2.1 N-terminus but not with the Kv3.1 N-terminus. The N-terminal amino acid sequence CDD which is conserved between Kv2 and KvS subunits appeared to be a key determinant since charge reversals with arginine substitutions abolished the interaction between the N-terminus of Kv2.1 and the C-terminus of both Kv2.1 and Kv6.4. In addition, the Kv6.4(CKv3.1) chimera in which the C-terminus of Kv6.4 was replaced by the corresponding domain of Kv3.1, disrupted the assembly with Kv2.1. These results indicate that the subfamily-specific Kv2.1/Kv6.4 heterotetramerization is determined by interactions between Kv2.1 and Kv6.4 that involve both the N- and C-termini in which the conserved N-terminal CDD sequence plays a key role.


Asunto(s)
Canales de Potasio Shab/metabolismo , Secuencia de Aminoácidos , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Inmunoprecipitación , Mutagénesis , Técnicas de Placa-Clamp , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Canales de Potasio Shab/química , Canales de Potasio Shab/genética
20.
Biophys J ; 106(1): 134-44, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24411245

RESUMEN

Kv channels detect changes in the membrane potential via their voltage-sensing domains (VSDs) that control the status of the S6 bundle crossing (BC) gate. The movement of the VSDs results in a transfer of the S4 gating charges across the cell membrane but only the last 10-20% of the total gating charge movement is associated with BC gate opening, which involves cooperative transition(s) in the subunits. Substituting the proline residue P475 in the S6 of the Shaker channel by a glycine or alanine causes a considerable shift in the voltage-dependence of the cooperative transition(s) of BC gate opening, effectively isolating the late gating charge component from the other gating charge that originates from earlier VSD movements. Interestingly, both mutations also abolished Shaker's sensitivity to 4-aminopyridine, which is a pharmacological tool to isolate the late gating charge component. The alanine substitution (that would promote a α-helical configuration compared to proline) resulted in the largest separation of both gating charge components; therefore, BC gate flexibility appears to be important for enabling the late cooperative step of channel opening.


Asunto(s)
4-Aminopiridina/farmacología , Activación del Canal Iónico , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de la Superfamilia Shaker/metabolismo , Secuencia de Aminoácidos , Células HEK293 , Humanos , Datos de Secuencia Molecular , Mutación , Estructura Terciaria de Proteína , Canales de Potasio de la Superfamilia Shaker/antagonistas & inhibidores , Canales de Potasio de la Superfamilia Shaker/química , Canales de Potasio de la Superfamilia Shaker/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...