RESUMEN
Background: Dunnione has anti-inflammatory properties arising from its ability to alter the ratio of NAD+/NADH through NAD(P)H quinone oxidoreductase 1 (NQO1) enzymatic action, followed by subsequent inhibition of NF-κB and inflammatory cytokines. Psoriasis is a chronic, inflammatory skin disorder in which the IL-23/Th17 axis plays an important role in inflammation. However, it is unclear whether modulation of NAD+ levels affects psoriasis, such as skin inflammation. Therefore, in this study, we investigated the effect of NAD+/NADH ratio modulation on imiquimod (IMQ)-induced, psoriasis-like skin inflammation in mice. Methods: Psoriasis-like skin inflammation was generated by daily topical application of IMQ cream. The severity of dermatitis was assessed using the Psoriasis Area Severity Index (PASI) and histochemistry. Expression of inflammatory cytokines was detected by enzyme-linked immunosorbent assay and quantitative PCR. Acetylation of NF-κB p65 and STAT3 was determined by Western blotting. Results: Dunnione improved IMQ-induced epidermal hyperplasia and inflammation, consistent with decreased levels of inflammatory cytokines (IL-17, IL-22, and IL-23) in skin lesions. Moreover, we found that an increase in the NAD+/NADH ratio by dunnione restored SIRT1 activity, thereby reduced imiquimod-induced STAT3 acetylation, which modulates the expression of psoriasis-promoting inflammatory cytokines, such as IL-17, IL-22, and IL-23. Conclusion: Pharmacological modulation of cellular NAD+ levels could be a promising therapeutic approach for psoriasis-like skin disease.
RESUMEN
Cancer-associated thrombosis is the second-leading cause of mortality in patients with cancer and presents a poor prognosis, with a lack of effective treatment strategies. NAD(P)H quinone oxidoreductase 1 (NQO1) increases the cellular nicotinamide adenine dinucleotide (NAD+) levels by accelerating the oxidation of NADH to NAD+, thus playing important roles in cellular homeostasis, energy metabolism, and inflammatory responses. Using a murine orthotopic 4T1 breast cancer model, in which multiple thrombi are generated in the lungs at the late stage of cancer development, we investigated the effects of regulating the cellular NAD+ levels on cancer-associated thrombosis. In this study, we show that dunnione (a strong substrate of NQO1) attenuates the prothrombotic state and lung thrombosis in tumor-bearing mice by inhibiting the expression of tissue factor and formation of neutrophil extracellular traps (NETs). Dunnione increases the cellular NAD+ levels in lung tissues of tumor-bearing mice to restore the declining sirtuin 1 (SIRT1) activity, thus deacetylating nuclear factor-kappa B (NF-κB) and preventing the overexpression of tissue factor in bronchial epithelial and vascular endothelial cells. In addition, we demonstrated that dunnione abolishes the ability of neutrophils to generate NETs by suppressing histone acetylation and NADPH oxidase (NOX) activity. Overall, our results reveal that the regulation of cellular NAD+ levels by pharmacological agents may inhibit pulmonary embolism in tumor-bearing mice, which may potentially be used as a viable therapeutic approach for the treatment of cancer-associated thrombosis.
Asunto(s)
Neoplasias de la Mama/complicaciones , Trampas Extracelulares/efectos de los fármacos , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , NAD/metabolismo , Naftoquinonas/farmacología , Trombofilia/tratamiento farmacológico , Tromboplastina/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos BALB C , Sirtuina 1/metabolismo , Trombofilia/etiología , Trombofilia/prevención & control , Tromboplastina/antagonistas & inhibidores , Trombosis/tratamiento farmacológico , Trombosis/etiología , Trombosis/prevención & controlRESUMEN
Slc25a17 is known as a peroxisomal solute carrier, but the in vivo role of the protein has not been demonstrated. We found that the zebrafish genome contains two slc25a17 genes that function redundantly, but additively. Notably, peroxisome function in slc25a17 knockdown embryos is severely compromised, resulting in an altered lipid composition. Along the defects found in peroxisome-associated phenotypic presentations, we highlighted that development of the swim bladder is also highly dependent on Slc25a17 function. As Slc25a17 showed substrate specificity towards coenzyme A (CoA), injecting CoA, but not NAD+ , rescued the defective swim bladder induced by slc25a17 knockdown. These results indicated that Slc25a17 acts as a CoA transporter, involved in the maintenance of functional peroxisomes that are essential for the development of multiple organs during zebrafish embryogenesis. Given high homology in protein sequences, the role of zebrafish Slc25a17 may also be applicable to the mammalian system.
Asunto(s)
Coenzima A/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de la Membrana/metabolismo , Sacos Aéreos/crecimiento & desarrollo , Sacos Aéreos/metabolismo , Secuencia de Aminoácidos , Animales , Coenzima A/genética , Secuencia Conservada , Evolución Molecular , Proteínas de la Membrana/genética , Pez CebraRESUMEN
Age-related hearing loss (ARHL) is a major neurodegenerative disorder and the leading cause of communication deficit in the elderly population, which remains largely untreated. The development of ARHL is a multifactorial event that includes both intrinsic and extrinsic factors. Recent studies suggest that NAD+ /NADH ratio may play a critical role in cellular senescence by regulating sirtuins, PARP-1, and PGC-1α. Nonetheless, the beneficial effect of direct modulation of cellular NAD+ levels on aging and age-related diseases has not been studied, and the underlying mechanisms remain obscure. Herein, we investigated the effect of ß-lapachone (ß-lap), a known plant-derived metabolite that modulates cellular NAD+ by conversion of NADH to NAD+ via the enzymatic action of NADH: quinone oxidoreductase 1 (NQO1) on ARHL in C57BL/6 mice. We elucidated that the reduction of cellular NAD+ during the aging process was an important contributor for ARHL; it facilitated oxidative stress and pro-inflammatory responses in the cochlear tissue through regulating sirtuins that alter various signaling pathways, such as NF-κB, p53, and IDH2. However, augmentation of NAD+ by ß-lap effectively prevented ARHL and accompanying deleterious effects through reducing inflammation and oxidative stress, sustaining mitochondrial function, and promoting mitochondrial biogenesis in rodents. These results suggest that direct regulation of cellular NAD+ levels by pharmacological agents may be a tangible therapeutic option for treating various age-related diseases, including ARHL.
Asunto(s)
Envejecimiento/metabolismo , Pérdida Auditiva/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , NAD/metabolismo , Envejecimiento/efectos de los fármacos , Animales , Pérdida Auditiva/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Naftoquinonas/farmacología , Estrés Oxidativo/efectos de los fármacosRESUMEN
ABCD4, a member of the ATP-binding cassette transporter superfamily, is associated with the transport of vitamin B12 which is crucial for the development of red blood cells (RBCs) and may also be involved in its metabolism. However, the molecular function of ABCD4 during RBC development in zebrafish is mostly unknown. Using a morpholino-based knockdown approach, we found that abcd4-knockdown resulted in abnormal RBCs of irregular shapes and various sizes. o-Dianisidine staining, as an indicator of hemoglobin in RBCs, further confirmed that abcd4 morphants possessed fewer hemoglobinized cells and impaired blood circulation. Multiple protein sequence alignment revealed that the amino acid sequence for residues 13-292, which is the domain of vitamin B12 transport, of the zebrafish Abcd4 was highly conserved compared to that of other species. Accordingly, the abcd4 morphants can be rescued with human ABCD4, demonstrating a conserved role of ABCD4 in vertebrates. Notably, the vitamin B12-deficient phenotype in abcd4 morphants, which causes anemia, was recapitulated in the newly-established abcd4 mutant, indicating the possibility that the abcd4 mutant could be used as a disease model of vitamin B12-deficiency anemia. Our study provides an insight that the analysis of the newly-established abcd4 mutant may contribute to understanding its roles in ABCD4-related vitamin B12-deficiency anemia and the associated pathogeneses in humans.
Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Anemia/metabolismo , Deficiencia de Vitamina B 12/metabolismo , Transportadoras de Casetes de Unión a ATP/deficiencia , Transportadoras de Casetes de Unión a ATP/genética , Animales , Mutación , Pez CebraRESUMEN
Reactive oxygen species (ROS) regulates the activation of inflammatory cascades and tissue damage in acute pancreatitis. NADPH oxidase (NOX) is upregulated in pancreatitis and is one of the major enzymes involved in ROS production using NADPH as a general rate-limiting substrate. Dunnione, a well-known substrate of NAD(P)H:quinone oxidoreductase 1 (NQO1), reduces the ratio of cellular NADPH/NADP+ through the enzymatic action of NQO1. This study assessed whether a reduction in cellular NADPH/NADP+ ratio can be used to regulate caerulein-induced pancreatic damage associated with NOX-induced ROS production in animal models. Dunnione treatment significantly reduced the cellular NADPH/NADP+ ratio and NOX activity through the enzymatic action of NQO1 in the pancreas of the caerulein-injection group. Similar to these results, total ROS production and expressions of mRNA and protein for NOX subunits Nox1, p27phox, p47phox, and p67phox also decreased in the dunnione-treated group. In addition, caerulein-induced pancreatic inflammation and acinar cell injury were significantly reduced by dunnione treatment. This study is the first to demonstrate that modulation of the cellular NADPH:NADP+ ratio by enzymatic action of NQO1 protects acute pancreatitis through the regulation of NOX activity. Furthermore, these results suggest that modulation of the NADPH:NADP+ ratio in cells by NQO1 may be a novel therapeutic strategy for acute pancreatitis.
Asunto(s)
NAD(P)H Deshidrogenasa (Quinona)/metabolismo , NADP/metabolismo , Pancreatitis/enzimología , Especies Reactivas de Oxígeno/metabolismo , Animales , Ceruletida/toxicidad , Masculino , Ratones , Ratones Noqueados , NAD(P)H Deshidrogenasa (Quinona)/genética , NADP/genética , Naftoquinonas/farmacología , Pancreatitis/inducido químicamente , Pancreatitis/tratamiento farmacológico , Pancreatitis/genéticaRESUMEN
BACKGROUND: Adriamycin (ADR) is a powerful chemotherapeutic agent extensively used to treat various human neoplasms. However, its clinical utility is hampered due to severe adverse side effects i.e. cardiotoxicity and heart failure. ADR-induced cardiomyopathy (AIC) has been reported to be caused by myocardial damage and dysfunction through oxidative stress, DNA damage, and inflammatory responses. Nonetheless, the remedies for AIC are even not established. Therefore, we illustrate the role of NAD+/NADH modulation by NAD(P)H quinone oxidoreductase 1 (NQO1) enzymatic action on AIC. METHODS AND RESULTS: AIC was established by intraperitoneal injection of ADR in C57BL/6 wild-type (WT) and NQO1 knockout (NQO1-/-) mice. All Mice were orally administered dunnione (named NQO1 substrate) before and after exposure to ADR. Cardiac biomarker levels in the plasma, cardiac dysfunction, oxidative biomarkers, and mRNA and protein levels of pro-inflammatory mediators were determined compared the cardiac toxicity of each experimental group. All biomarkers of Cardiac damage and oxidative stress, and mRNA levels of pro-inflammatory cytokines including cardiac dysfunction were increased in ADR-treated both WT and NQO1-/- mice. However, this increase was significantly reduced by dunnione in WT, but not in NQO1-/- mice. In addition, a decrease in SIRT1 activity due to a reduction in the NAD+/NADH ratio by PARP-1 hyperactivation was associated with AIC through increased nuclear factor (NF)-κB p65 and p53 acetylation in both WT and NQO1-/- mice. While an elevation in NAD+/NADH ratio via NQO1 enzymatic action using dunnione recovered SIRT1 activity and subsequently deacetylated NF-κB p65 and p53, however not in NQO1-/- mice, thereby attenuating AIC. CONCLUSION: Thus, modulation of NAD+/NADH by NQO1 may be a novel therapeutic approach to prevent chemotherapy-associated heart failure, including AIC.
Asunto(s)
Antibióticos Antineoplásicos/efectos adversos , Doxorrubicina/efectos adversos , Cardiopatías/etiología , Cardiopatías/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , NAD/metabolismo , Animales , Biopsia , Cardiotónicos/farmacología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ecocardiografía , Expresión Génica , Cardiopatías/diagnóstico , Cardiopatías/fisiopatología , Mediadores de Inflamación/metabolismo , Ratones , Ratones Noqueados , NADH NADPH Oxidorreductasas/genética , Naftoquinonas/farmacología , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Sirtuina 1/metabolismoRESUMEN
Peroxisomes are dynamic and multifunctional organelles involved in various cellular metabolic processes, and their numbers are tightly regulated by pexophagy, a selective degradation of peroxisomes through autophagy to maintain peroxisome homeostasis in cells. Catalase, a major peroxisome protein, plays a critical role in removing peroxisome-generated reactive oxygen species (ROS) produced by peroxisome enzymes, but the contribution of catalase to pexophagy has not been reported. Here, we investigated the role of catalase in peroxisome degradation during nutrient deprivation. Both short interfering RNA-mediated silencing of catalase and pharmacological inhibition by 3-aminotriazole (3AT) decreased the number of peroxisomes and resulted in the downregulation of peroxisomal proteins, such as PMP70 and PEX14 under serum starvation. In addition, treatment with 3AT induced NBR1-dependent autophagy and PEX5 ubiquitination in the absence of serum, which was accompanied by accumulation of ROS. Co-treatment with antioxidant agent N-acetyl-l-cysteine (NAC) prevented ROS accumulation and pexophagy by modulating peroxisome protein levels and the association of NBR1, a pexophagy receptor with peroxisomes. Taken together, these findings demonstrate that catalase plays an important role in pexophagy during nutrient deprivation.
Asunto(s)
Catalasa/metabolismo , Peroxisomas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Suero/metabolismo , Autofagia , Catalasa/antagonistas & inhibidores , Línea Celular , Células Hep G2 , Humanos , UbiquitinaciónRESUMEN
Defects in the PEX5 gene impair the import of peroxisomal matrix proteins, leading to nonfunctional peroxisomes and other associated pathological defects such as Zellweger syndrome. Although PEX5 regulates autophagy process in a stress condition, the mechanisms controlling autophagy by PEX5 under nutrient deprivation are largely unknown. Herein, we show a novel function of PEX5 in the regulation of autophagy via Transcription Factor EB (TFEB). Under serum-starved conditions, when PEX5 is depleted, the mammalian target of rapamycin (mTORC1) inhibitor TSC2 is downregulated, which results in increased phosphorylation of the mTORC1 substrates, including 70S6K, S6K, and 4E-BP-1. mTORC1 activation further suppresses the nuclear localization of TFEB, as indicated by decreased mRNA levels of TFEB, LIPA, and LAMP1. Interestingly, peroxisomal mRNA and protein levels are also reduced by TFEB inactivation, indicating that TFEB might control peroxisome biogenesis at a transcriptional level. Conversely, pharmacological inhibition of mTOR resulting from PEX5 depletion during nutrient starvation activates TFEB by promoting nuclear localization of the protein. In addition, mTORC1 inhibition recovers the damaged-peroxisome biogenesis. These data suggest that PEX5 may be a critical regulator of lysosomal gene expression and autophagy through the mTOR-TFEB-autophagy axis under nutrient deprivation.
Asunto(s)
Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Autofagia/genética , Línea Celular Tumoral , Metabolismo Energético , Regulación de la Expresión Génica , Humanos , Lisosomas/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/genética , Peroxisomas/metabolismo , Transporte de ProteínasRESUMEN
Primary cilium is a microtubule structure that emanates from the surface of most human cells. Primary cilia assemble during the resting stage (G0 phase) and disassemble with cell cycle progression. Defects associated with the control of the assembly or disassembly of the primary cilium have been implicated in various human diseases, including ciliopathy and cancer. Although studies have suggested the interplay between activation of autophagy and ciliogenesis, any direct mechanism between autophagy abatement and disassembly of primary cilium remains elusive. In this study, we found that the gradual abatement in autophagy during serum-restimulation was a dynamic process and significantly correlated with the disassembly of primary cilium in human retinal pigmented epithelial (RPE1) cells. Although autophagy activity was gradually decreased during serum-restimulation, the alteration in autophagy under the same condition prevented the disassembly of the primary cilium. Autophagy inhibitors such as chloroquine, U18666A and 3-methyladenine (3-MA) retained both the number of ciliated cells and cilium length. In contrast, rapamycin treatment during serum-restimulation maintained the number of ciliated cells with shortened cilia. Taken together, alteration in autophagy during serum-restimulation prevent the disassembly of the primary cilium, and autophagy modulators may serve as useful compounds for studying mechanistic details related to the disassembly of the primary cilium and ciliopathy.
Asunto(s)
Autofagia , Cilios/metabolismo , Epitelio Pigmentado de la Retina/citología , Autofagia/efectos de los fármacos , Línea Celular , Cilios/efectos de los fármacos , Humanos , Suero/metabolismo , Sirolimus/farmacologíaRESUMEN
OBJECTIVE: To examinie the synergistic effects of Banxia Xiexin Decoction (, Known as Banhasasim-tang in Korean) extract (BXDE) on cisplatin-induced cytotoxicity in the A549 human lung cancer cell lines. METHODS: A549 cells were treated with varying concentrations (50-200 µg/mL) of cisplatin and BXDE alone or in combination for 96 h. We used 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan assay and flow cytometry to analyze cell viability and apoptosis, respectively. RESULTS: The exposure of cells to cisplatin and BXDE alone or in combination decreased cell viability dose- and time-dependently (P<0.05), which was found to be mediated by the apoptotic pathway as confirmed by the increase in the annexin V+/propidium iodide- stained cell population and a ladder pattern of discontinuous DNA fragments. Furthermore, the apoptosis was inhibited by the pan-caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone (z-VAD-FMK). CONCLUSIONS: BXDE significantly potentiated apoptotic effects of cisplatin in A549 cells. Moreover, apoptosis induced by BXDE might be the pivotal mechanism mediating its chemopreventative action against cancer.
Asunto(s)
Apoptosis/efectos de los fármacos , Cisplatino/farmacología , Extractos Vegetales/farmacología , Células A549 , Proteínas Reguladoras de la Apoptosis/metabolismo , Inhibidores de Caspasas/farmacología , Fragmentación del ADN/efectos de los fármacos , HumanosRESUMEN
Splicing factors (SFs) are involved in oncogenesis or immune modulation, the common underlying processes giving rise to pleural effusion (PE). The expression profiles of three SFs (HNRNPA1, SRSF1, and SRSF3) and their clinical values have never been assessed in PE. The three SFs (in pellets of PE) and conventional tumor markers were analyzed using PE samples in patients with PE (N = 336). The sum of higher-molecular weight (Mw) forms of HNRNPA1 (Sum-HMws-HNRNPA1) and SRSF1 (Sum-HMws-SRSF1) and SRSF3 levels were upregulated in malignant PE (MPE) compared to benign PE (BPE); they were highest in cytology-positive MPE, followed by tuberculous PE and parapneumonic PE. Meanwhile, the lowest-Mw HNRNPA1 (LMw-HNRNPA1) and SRSF1 (LMw-SRSF1) levels were not upregulated in MPE. Sum-HMws-HNRNPA1, Sum-HMws-SRSF1, and SRSF3, but neither LMw-HNRNPA1 nor LMw-SRSF1, showed positive correlations with cancer cell percentages in MPE. The detection accuracy for MPE was high in the order of carcinoembryonic antigen (CEA, 85%), Sum-HMws-HNRNPA1 (76%), Sum-HMws-SRSF1 (68%), SRSF3, cytokeratin-19 fragments (CYFRA 21-1), LMw-HNRNPA1, and LMw-SRSF1. Sum-HMws-HNRNPA1 detected more than half of the MPE cases that were undetected by cytology and CEA. Sum-HMws-HNRNPA1, but not other SFs or conventional tumor markers, showed an association with longer overall survival among patients with MPE receiving chemotherapy. Our results demonstrated different levels of the three SFs with their Mw-specific profiles depending on the etiology of PE. We suggest that Sum-HMws-HNRNPA1 is a supplementary diagnostic marker for MPE and a favorable prognostic indicator for patients with MPE receiving chemotherapy.
RESUMEN
OBJECTIVE: Brown adipose tissue (BAT) activation has been identified as a possible target to treat obesity and to protect against metabolic diseases by increasing energy consumption. We explored whether albiflorin (AF), a natural compound, could contribute to lowering the high risk of obesity with BAT and primary brown preadipocytes in vivo and in vitro. MATERIALS/METHODS: Human adipose tissue-derived mesenchymal stem cells (hAMSCs) were cultured with adipogenic differentiation media with or without AF. Male C57BL/6J mice (n=5 per group) were fed a high-fat diet (HFD) for six weeks with or without AF. Brown preadipocytes from the interscapular BAT of mice were cultured with or without AF. RESULTS: In white adipogenic differentiation of hAMSCs, AF treatment significantly reduced the formation of lipid droplets and the expression of adipogenesis-related genes. In HFD-induced obese C57BL/6J mice, AF treatment significantly reduced body weight gain as well as the weights of the white adipose tissue, liver and spleen. Furthermore, AF induced the expression of genes involved in thermogenic function in BAT. In primary brown adipocytes, AF effectively stimulated the expressions of thermogenic genes and markedly up-regulated the AMP-activated protein kinase (AMPK) signaling pathway. Pretreatment with phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 nullified the induction of the thermogenic genes by AF in primary brown adipocytes. Moreover, AF activated beige cell marker genes induced by the pharmacological activation of peroxisome proliferator-activated receptor γ in hAMSCs. CONCLUSION: This study shows that AF prevents the development of obesity in hAMSCs and mice fed an HFD and that it is also capable of stimulating the differentiation of brown adipocytes through the modulation of thermogenic genes by AMPK and PI3K/AKT.
Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Hidrocarburos Aromáticos con Puentes/farmacología , Células Madre Mesenquimatosas/citología , Obesidad/tratamiento farmacológico , Proteína Oncogénica v-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Termogénesis/genética , Adipocitos Marrones/efectos de los fármacos , Tejido Adiposo/citología , Tejido Adiposo Blanco/efectos de los fármacos , Animales , Hidrocarburos Aromáticos con Puentes/uso terapéutico , Diferenciación Celular , Células Cultivadas , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Activación TranscripcionalRESUMEN
Acute pancreatitis (AP) is a complicated disease without specific drug therapy. The cofactor nicotinamide adenine dinucleotide (NAD+) is an important regulator of cellular metabolism and homeostasis. However, it remains unclear whether modulation of NAD+ levels has an impact on caerulein-induced AP. Therefore, in this study, we investigated the effect of increased cellular NAD+ levels on caerulein-induced AP. We demonstrated for the first time that the activities and expression of SIRT1 were suppressed by reduction of intracellular NAD+ levels and the p53-microRNA-34a pathway in caerulein-induced AP. Moreover, we confirmed that the increase of cellular NAD+ by NQO1 enzymatic action using the substrate ß-Lapachone suppressed caerulein-induced AP with down-regulating TLR4-mediated inflammasome signalling, and thereby reducing the inflammatory responses and pancreatic cell death. These results suggest that pharmacological stimulation of NQO1 could be a promising therapeutic strategy to protect against pathological tissue damage in AP.
Asunto(s)
Inflamasomas/metabolismo , NAD/metabolismo , Pancreatitis Aguda Necrotizante/patología , Transducción de Señal , Animales , Ceruletida/toxicidad , Ratones Endogámicos C57BL , MicroARNs/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Pancreatitis Aguda Necrotizante/inducido químicamente , Sirtuina 1/metabolismo , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
ß-Lapachone is a natural quinone compound from Lapacho trees, which has various pharmacological effects such as anti-bacterial, anti-fungal, anti-viral, and anti-inflammatory activities. However, the effect of ß-lapachone on metastasis of melanoma cells is unclear. In this study, ß-lapachone reduced cell viability of metastatic melanoma cancer cell lines B16F10 and B16BL6 through induction of apoptosis via the mitogen-activated protein kinase (MAPK) pathway. Additionally, flow cytometry results showed that ß-lapachone increased DNA content in the G0/G1 phase of the cell cycle. Analysis of the mechanisms of these events indicated that ß-lapachone regulated the expression of Bcl-2, Bcl-xL, and Bax, resulting in the activation of caspase-3, -8, -9, and poly-ADP-ribose polymerase (PARP). Moreover, the ß-lapachone-administered group showed significantly decreased lung metastasis in the experimental mouse model. In conclusion, our study demonstrates the inhibitory effect of ß-lapachone on lung metastasis of melanoma cells and provides a new insight into the role of ß-lapachone as a potential antitumor agent.
Asunto(s)
Neoplasias Pulmonares/prevención & control , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanoma/patología , Naftoquinonas/farmacología , Metástasis de la Neoplasia/prevención & control , Animales , Femenino , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/secundario , Ratones , Ratones Endogámicos C57BLRESUMEN
OBJECTIVE: Heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1), serine/arginine-rich splicing factor 1 (SRSF1), and SRSF3 are splicing regulators associated with oncogenesis. However, the alterations of SF proteins and their diagnostic values in cervical cancer are unclear. To apply SFs clinically, effective marker selection and characterization of the target organ properties are essential. MATERIALS AND METHODS: We concurrently analyzed HNRNPA1, SRSF1, SRSF3, and the conventional tumor markers squamous cell carcinoma antigen (SCCA) and carcinoembryonic antigen (CEA) in cervical tissue samples (n = 127) using semiquantitative immunoblotting. In addition, we compared them with p16 (cyclin-dependent kinase inhibitor 2A [CDKN2A]), which has shown high diagnostic efficacy in immunohistochemical staining studies and has been proposed as a candidate protein for point-of-care screening biochemical tests of cervical neoplasia. RESULTS: HNRNPA1, higher molecular weight forms of SRSF1 (SRSF1-HMws), SRSF3, CEA, and p16 levels were higher (P < 0.05) in cervical carcinoma tissue samples than in nontumoral cervical tissue samples. However, the levels of SRSF1-Total (sum of SRSF1-HMws and a lower molecular weight form of SRSF1) and SCCA, a commonly used cervical tumor marker, were not different between carcinoma and nontumoral tissue samples. In paired sample comparisons, HNRNPA1 (94%) showed the highest incidence of up-regulation (carcinoma/nontumor, >1.5) in cervical carcinoma, followed by p16 (84%), SRSF1-HMws (69%), SRSF3 (66%), CEA (66 %), SCCA (32%), and SRSF1-Total (31%). HNRNPA1 (92%) and p16 (91%) presented the two highest diagnostic accuracies for cervical carcinoma, which were superior to those of SRSF3 (75%), SRSF1-HMws (72%), CEA (72%), SCCA (59%), and SRSF1-Total (55%). CONCLUSIONS: Our results identified that HNRNPA1 is the best diagnostic marker among the SFs and conventional markers given its excellent diagnostic efficacy for cervical carcinoma, and it has a p16-comparable diagnostic value. We suggest that HNRNPA1 is an additional effective target protein for developing cervical cancer detection tools.
Asunto(s)
Biomarcadores de Tumor/análisis , Ribonucleoproteína Nuclear Heterogénea A1/análisis , Neoplasias del Cuello Uterino/diagnóstico , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Femenino , Ribonucleoproteína Nuclear Heterogénea A1/genética , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Humanos , Immunoblotting , Persona de Mediana Edad , Factores de Empalme Serina-Arginina/análisis , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Regulación hacia Arriba , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismoRESUMEN
BACKGROUND: Idiopathic pulmonary fibrosis is a common interstitial lung disease; it is a chronic, progressive, and fatal lung disease of unknown etiology. Over the last two decades, knowledge about the underlying mechanisms of pulmonary fibrosis has improved markedly and facilitated the identification of potential targets for novel therapies. However, despite the large number of antifibrotic drugs being described in experimental pre-clinical studies, the translation of these findings into clinical practices has not been accomplished yet. NADH:quinone oxidoreductase 1 (NQO1) is a homodimeric enzyme that catalyzes the oxidation of NADH to NAD+ by various quinones and thereby elevates the intracellular NAD+ levels. In this study, we examined the effect of increase in cellular NAD+ levels on bleomycin-induced lung fibrosis in mice. METHODS: C57BL/6 mice were treated with intratracheal instillation of bleomycin. The mice were orally administered with ß-lapachone from 3 days before exposure to bleomycin to 1-3 weeks after exposure to bleomycin. Bronchoalveolar lavage fluid (BALF) was collected for analyzing the infiltration of immune cells. In vitro, A549 cells were treated with transforming growth factor ß1 (TGF-ß1) and ß-lapachone to analyze the extracellular matrix (ECM) and epithelial-mesenchymal transition (EMT). RESULTS: ß-Lapachone strongly attenuated bleomycin-induced lung inflammation and fibrosis, characterized by histological staining, infiltrated immune cells in BALF, inflammatory cytokines, fibrotic score, and TGF-ß1, α-smooth muscle actin accumulation. In addition, ß-lapachone showed a protective role in TGF-ß1-induced ECM expression and EMT in A549 cells. CONCLUSION: Our results suggest that ß-lapachone can protect against bleomycin-induced lung inflammation and fibrosis in mice and TGF-ß1-induced EMT in vitro, by elevating the NAD+/NADH ratio through NQO1 activation.
RESUMEN
OBJECTIVES: SR-splicing factors (SRSFs) play important roles in oncogenesis. However, the expression of SRSF 5-7 proteins in lung cancer (LC) is unclear, and their use in the diagnosis of pleural diseases has never been assessed. We evaluated SRSF 5-7 protein levels in LC and their diagnostic potential for cancer cells in lung and pleural effusion (PE) and, for the dysregulated SRSFs, investigated their neutralization effect on LC. MATERIALS AND METHODS: SRSF 5-7 levels in lung tissue and PE cell lysate samples (n=453) were compared with the results of conventional tumor markers. Knockdown of SRSF gene expression was performed using small interfering RNAs on small-cell LC (SCLC) cell lines. RESULTS: In lung tissue analysis, SRSF 5-7 levels were up-regulated in LC samples compared with non-tumoral lung tissue samples; they were markedly higher in SCLC than in adenocarcinoma or squamous cell carcinoma. SRSF5 showed the highest detection accuracy (89%) for total LC, and it was superior to that (74%) of carcinoembryonic antigen [CEA, a commonly used non-SCLC (NSCLC) marker]. Notably, the detection accuracies of the three SRSFs for SCLC were all 100% and higher than that (69%) of a pro-gastrin-releasing peptide (a well-known SCLC marker). In PE cell analysis, the detection accuracy (86%) of SRSF5 for malignant cells was highest among SRSFs and comparable to that (83%) of CEA. SRSF5 additionally detected 70% of CEA-missed non-NSCLC cases. Down-regulation of the SRSFs induced mild (SRSF5 and SRSF7) to remarkably (SRSF6) reduced cell proliferation. CONCLUSIONS: Our results demonstrated the up-regulated expression of SRSF 5-7 proteins in LC with much more profound up-regulation in SCLC than in NSCLC and suggest that up-regulation of the SRSFs is related to SCLC proliferation. Moreover, we identified SRSF5 as a novel detection marker for SCLC and pleural metastatic cancer cells.
Asunto(s)
Biomarcadores de Tumor , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pleurales/metabolismo , Neoplasias Pleurales/secundario , Factores de Empalme Serina-Arginina/metabolismo , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Carcinoma Pulmonar de Células Pequeñas/patología , Anciano , Antígeno Carcinoembrionario/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Fragmentos de Péptidos/metabolismo , Proteínas Recombinantes/metabolismo , Factores de Empalme Serina-Arginina/genéticaRESUMEN
Very long chain fatty acids are required for sphingolipid synthesis, lipid homeostasis, myelin formation, epidermal permeability, and retinal function. Seven different enzymes are known to be involved in the elongation cycle of fatty acids, with different chain-length specificities. Elovl1 is one of those enzymes whose function has been linked mainly to the synthesis of sphingolipids and the epidermal barrier. However, the role of Elovl1 in organogenesis is not clear. In zebrafish, 2 Elovl1 genes, elovl1a and elovl1b, are highly expressed in the swim bladder, and elovl1b is also expressed in the kidney. We found that both elovl1 knockdown embryos contain increased levels of long chain fatty acids from carbon number 14 to 20 as compared to control embryos. Oil-Red-O staining shows that yolk lipid consumption is greatly reduced, whereas lipid droplets accumulate within the swim bladder. Notably, knockdown of either elovl1a or elovl1b affects the expression of genes involved in swim bladder development and impairs inflation of the swim bladder. Consistent with its expression in the pronephros, knockdown of elovl1b alone affects the expression of genes required for kidney development and reduces renal clearance. Our findings strongly suggest that both elovl1 genes are a key determinant of swim bladder and kidney development in zebrafish, which may be comparatively applicable to lung and kidney development in humans.
Asunto(s)
Acetiltransferasas/metabolismo , Sacos Aéreos/embriología , Sacos Aéreos/enzimología , Desarrollo Embrionario , Riñón/embriología , Riñón/enzimología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Acetiltransferasas/química , Acetiltransferasas/genética , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Yema de Huevo/metabolismo , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/genética , Duplicación de Gen , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genoma , Riñón/fisiología , Metabolismo de los Lípidos , Mamíferos , Vaina de Mielina/metabolismo , Neuronas/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genéticaRESUMEN
Although arctigenin (ARC) has been reported to have some pharmacological effects such as anti-inflammation, anti-cancer, and antioxidant, there have been no reports on the anti-obesity effect of ARC. The aim of this study is to investigate whether ARC has an anti-obesity effect and mediates the AMP-activated protein kinase (AMPK) pathway. We investigated the anti-adipogenic effect of ARC using 3T3-L1 pre-adipocytes and human adipose tissue-derived mesenchymal stem cells (hAMSCs). In high-fat diet (HFD)-induced obese mice, whether ARC can inhibit weight gain was investigated. We found that ARC reduced weight gain, fat pad weight, and triglycerides in HFD-induced obese mice. ARC also inhibited the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα) in in vitro and in vivo. Furthermore, ARC induced the AMPK activation resulting in down-modulation of adipogenesis-related factors including PPARγ, C/EBPα, fatty acid synthase, adipocyte fatty acid-binding protein, and lipoprotein lipase. This study demonstrates that ARC can reduce key adipogenic factors by activating the AMPK in vitro and in vivo and suggests a therapeutic implication of ARC for obesity treatment. J. Cell. Biochem. 117: 2067-2077, 2016. © 2016 Wiley Periodicals, Inc.