Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 404
Filtrar
1.
Neural Regen Res ; 20(5): 1445-1454, 2025 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-39075911

RESUMEN

JOURNAL/nrgr/04.03/01300535-202505000-00027/figure1/v/2024-07-28T173839Z/r/image-tiff Cerebral ischemia is a major health risk that requires preventive approaches in addition to drug therapy. Physical exercise enhances neurogenesis and synaptogenesis, and has been widely used for functional rehabilitation after stroke. In this study, we determined whether exercise training before disease onset can alleviate the severity of cerebral ischemia. We also examined the role of exercise-induced circulating factors in these effects. Adult mice were subjected to 14 days of treadmill exercise training before surgery for middle cerebral artery occlusion. We found that this exercise pre-conditioning strategy effectively attenuated brain infarct area, inhibited gliogenesis, protected synaptic proteins, and improved novel object and spatial memory function. Further analysis showed that circulating adiponectin plays a critical role in these preventive effects of exercise. Agonist activation of adiponectin receptors by AdipoRon mimicked the effects of exercise, while inhibiting receptor activation abolished the exercise effects. In summary, our results suggest a crucial role of circulating adiponectin in the effects of exercise pre-conditioning in protecting against cerebral ischemia and supporting the health benefits of exercise.

2.
J Transl Med ; 22(1): 727, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103918

RESUMEN

BACKGROUND: Vascular dysregulation is one of the major risk factors of glaucoma, and endothelin-1 (ET-1) may have a role in the pathogenesis of vascular-related glaucoma. Fruit extract from Lycium Barbarum (LB) exhibits anti-ageing and multitarget mechanisms in protecting retinal ganglion cells (RGC) in various animal models. To investigate the therapeutic efficacy of LB glycoproteins (LbGP) in ET-1 induced RGC degeneration, LbGP was applied under pre- and posttreatment conditions to an ET-1 mouse model. Retina structural and functional outcomes were characterised using clinical-based techniques. METHODS: Adult C57BL/6 mice were randomly allocated into four experimental groups, namely vehicle control (n = 9), LbGP-Pretreatment (n = 8), LbGP-Posttreatment (day 1) (n = 8) and LbGP-Posttreatment (day 5) (n = 7). Oral administration of LbGP 1 mg/Kg or PBS for vehicle control was given once daily. Pre- and posttreatment (day 1 or 5) were commenced at 1 week before and 1 or 5 days after intravitreal injections, respectively, and were continued until postinjection day 28. Effects of treatment on retinal structure and functions were evaluated using optical coherence tomography (OCT), doppler OCT and electroretinogram measurements at baseline, post-injection days 10 and 28. RGC survival was evaluated by using RBPMS immunostaining on retinal wholemounts. RESULTS: ET-1 injection in vehicle control induced transient reductions in arterial flow and retinal functions, leading to significant RNFL thinning and RGC loss at day 28. Although ET-1 induced a transient loss in blood flow or retinal functions in all LbGP groups, LbGP treatments facilitated better restoration of retinal flow and retinal functions as compared with the vehicle control. Also, all three LbGP treatment groups (i.e. pre- and posttreatments from days 1 or 5) significantly preserved thRNFL thickness and RGC densities. No significant difference in protective effects was observed among the three LbGP treatment groups. CONCLUSION: LbGP demonstrated neuroprotective effects in a mouse model of ET-1 induced RGC degeneration, with treatment applied either as a pretreatment, immediate or delayed posttreatment. LbGP treatment promoted a better restoration of retinal blood flow, and protected the RNFL, RGC density and retinal functions. This study showed the translational potential of LB as complementary treatment for glaucoma management.


Asunto(s)
Endotelina-1 , Ratones Endogámicos C57BL , Neuroprotección , Células Ganglionares de la Retina , Animales , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/patología , Células Ganglionares de la Retina/metabolismo , Endotelina-1/metabolismo , Neuroprotección/efectos de los fármacos , Electrorretinografía , Lycium/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Degeneración Retiniana/tratamiento farmacológico , Degeneración Retiniana/patología , Tomografía de Coherencia Óptica , Masculino , Ratones , Degeneración Nerviosa/patología , Degeneración Nerviosa/tratamiento farmacológico
3.
Front Pharmacol ; 15: 1404119, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39021836

RESUMEN

Lycium ruthenicum Murray (LR), known as "black goji berry" or "black wolfberry", is widely utilized in chinese herbal medicine. LR fruit showed its antioxidant and/or anti-inflammation activity in treating cardiac injury, experimental colitis, nonalcoholic fatty liver disease, fatigue, and aging. Glaucoma is the leading cause of irreversible blindness. Besides elevated intraocular pressure (IOP), oxidative stress and neuroinflammation were recognized to contribute to the pathogenesis of glaucoma. This study investigated the treatment effects of LR water extract (LRE) on retinal ganglion cells (RGCs) threatened by sustained IOP elevation in a laser-induced chronic ocular hypertension (COH) mouse model and the DBA/2J mouse strain. The antioxidation and anti-inflammation effects of LRE were further tested in the H2O2-challenged immortalized microglial (IMG) cell line in vitro. LRE oral feeding (2 g/kg) preserved the function of RGCs and promoted their survival in both models mimicking glaucoma. LRE decreased 8-hydroxyguanosine (oxidative stress marker) expression in the retina. LRE reduced the number of Iba-1+ microglia in the retina of COH mice, but not in the DBA/2J mice. At the mRNA level, LRE reversed the COH induced HO-1 and SOD-2 overexpressions in the retina of COH mice. Further in vitro study demonstrated that LRE pretreatment to IMG cells could significantly reduce H2O2 induced oxidative stress through upregulation of GPX-4, Prdx-5, HO-1, and SOD-2. Our work demonstrated that daily oral intake of LRE can be used as a preventative/treatment agent to protect RGCs under high IOP stress probably through reducing oxidative stress and inhibiting microglial activation in the retina.

4.
Front Psychiatry ; 15: 1393549, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993386

RESUMEN

Background: Maternal exposure to inflammation is one of the causes of autism spectrum disorder (ASD). Electrical stimulation of the vagus nerve exerts a neuroprotective effect via its anti-inflammatory action. We thus investigated whether transcutaneous auricular vagus nerve stimulation (taVNS) can enhance social abilities in a mouse model of ASD induced by maternal immune activation (MIA). Methods: ASD mouse model were constructed by intraperitoneal injection of polyinosinic:polycytidylic acid (poly (I:C)). TaVNS with different parameters were tested in ASD mouse model and in C57BL/6 mice, then various behavioral tests and biochemical analyses related to autism were conducted. ASD model mice were injected with an interleukin (IL)-17a antibody into the brain, followed by behavioral testing and biochemical analyses. Results: TaVNS reduced anxiety, improved social function, decreased the number of microglia, and inhibited M1 polarization of microglia. Additionally, taVNS attenuated the expression of the IL-17a protein in the prefrontal cortex and blood of ASD model mice. To examine the possible involvement of IL-17a in taVNS-induced neuroprotection, we injected an IL-17a antibody into the prefrontal cortex of ASD model mice and found that neutralizing IL-17a decreased the number of microglia and inhibited M1 polarization. Furthermore, neutralizing IL-17a improved social function in autism model mice. Conclusion: Our study revealed that reduced neuroinflammation is an important mechanism of taVNS-mediated social improvement and neuroprotection against autism. This effect of taVNS could be attributed to the inhibition of the IL-17a pathway.

5.
Biol Psychiatry ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39069165

RESUMEN

BACKGROUND: Bipolar Disorder (BD), a severe neuropsychiatric condition, often appears during adolescence. Traditional diagnostic methods, which primarily relying on clinical interviews and single-modal MRI techniques, may have limitations in accuracy. This study aimed to improve adolescent BD diagnosis by integrating behavioral assessments with multimodal MRI. We hypothesized that this combination would enhance diagnostic accuracy for at-risk adolescents. METHODS: A retrospective cohort of 309 subjects, including BD patients, offspring of BD patients (with and without subthreshold symptoms), non-BD offspring with subthreshold symptoms, and healthy controls, was analysed. Behavioral attributes were integrated with MRI features from T1, rsfMRI, and DTI. Three diagnostic models were developed using GLMNET multinomial regression: a clinical diagnosis model based on behavioral attributes, an MRI-based model, and a comprehensive model integrating both datasets. RESULTS: The comprehensive model achieved a prediction accuracy of 0.83 (CI: [0.72, 0.92]), significantly higher than the clinical (0.75) and MRI-based (0.65) models. Validation with an external cohort showed high accuracy (0.89, AUC=0.95). Structural equation modelling revealed that Clinical Diagnosis (ß=0.487, p<0.0001), Parental BD History (ß=-0.380, p<0.0001), and Global Function (ß=0.578, p<0.0001) significantly impacted Brain Health, while Psychiatric Symptoms showed only a marginal influence (ß=-0.112, p=0.056). CONCLUSION: This study highlights the value of integrating multimodal MRI with behavioral assessments for early diagnosis in at-risk adolescents. Combining neuroimaging enables more accurate patient subgroup distinctions, facilitating timely interventions and improving health outcomes. Our findings suggest a paradigm shift in BD diagnostics, advocating for incorporating advanced imaging techniques in routine evaluations.

6.
Biomolecules ; 14(7)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39062547

RESUMEN

Microglia, as resident macrophages in the central nervous system, play a multifunctional role in the pathogenesis of Alzheimer's disease (AD). Their clustering around amyloid-ß (Aß) deposits is a core pathological feature of AD. Recent advances in single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq) have revealed dynamic changes in microglial phenotypes over time and across different brain regions during aging and AD progression. As AD advances, microglia primarily exhibit impaired phagocytosis of Aß and tau, along with the release of pro-inflammatory cytokines that damage synapses and neurons. Targeting microglia has emerged as a potential therapeutic approach for AD. Treatment strategies involving microglia can be broadly categorized into two aspects: (1) enhancing microglial function: This involves augmenting their phagocytic ability against Aß and cellular debris and (2) mitigating neuroinflammation: Strategies include inhibiting TNF-α signaling to reduce the neuroinflammatory response triggered by microglia. Clinical trials exploring microglia-related approaches for AD treatment have garnered attention. Additionally, natural products show promise in enhancing beneficial effects and suppressing inflammatory responses. Clarifying microglial dynamics, understanding their roles, and exploring novel therapeutic approaches will advance our fight against AD.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Fagocitosis , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/terapia , Humanos , Microglía/metabolismo , Microglía/patología , Animales , Péptidos beta-Amiloides/metabolismo
7.
Cell Rep ; 43(6): 114356, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38865246

RESUMEN

In addition to its role in vision, light also serves non-image-forming visual functions. Despite clinical evidence suggesting the antipruritic effects of bright light treatment, the circuit mechanisms underlying the effects of light on itch-related behaviors remain poorly understood. In this study, we demonstrate that bright light treatment reduces itch-related behaviors in mice through a visual circuit related to the lateral parabrachial nucleus (LPBN). Specifically, a subset of retinal ganglion cells (RGCs) innervates GABAergic neurons in the ventral lateral geniculate nucleus and intergeniculate leaflet (vLGN/IGL), which subsequently inhibit CaMKIIα+ neurons in the LPBN. Activation of both the vLGN/IGL-projecting RGCs and the vLGN/IGL-to-LPBN projections is sufficient to reduce itch-related behaviors induced by various pruritogens. Importantly, we demonstrate that the antipruritic effects of bright light treatment rely on the activation of the retina-vLGN/IGL-LPBN pathway. Collectively, our findings elucidate a visual circuit related to the LPBN that underlies the antipruritic effects of bright light treatment.


Asunto(s)
Núcleos Parabraquiales , Prurito , Animales , Ratones , Núcleos Parabraquiales/fisiología , Prurito/patología , Luz , Células Ganglionares de la Retina/efectos de la radiación , Vías Visuales/efectos de la radiación , Ratones Endogámicos C57BL , Masculino , Antipruriginosos/farmacología , Antipruriginosos/uso terapéutico , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/efectos de la radiación , Conducta Animal/efectos de la radiación , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-38909895

RESUMEN

BACKGROUND: Risk for Bipolar disorder (BD) is increased among individuals with family history or subthreshold mood symptoms. However, the brain structural developments associated with these BD risks remained unknown. METHODS: This longitudinal cohort study examined the brain grey matter volume (GMV) developmental features of familial and symptomatic risks for BD, and their associations with participants' global function levels. We recruited unaffected BD offspring with (N=26, age=14.9±2.9 years, 14 females) or without (N=35, age=15.3±2.7 years, 19 females) subthreshold manic or depressive symptoms, and unaffected non-BD offspring with (N=49, age=14.5±2.2 years, 30 females) or without (N=68, age=15.0±2.3 years, 37 females) symptoms. The offspring had no mood disorder diagnosis prior to the study. The average follow-up duration was 2.63±1.63 years. RESULTS: We found at baseline, significant interactive effects of familial risk and subthreshold symptoms indicated the symptomatic offspring exhibited markedly large GMV in the brain affective and cognitive circuitries. During follow-up, the combined group of BD offspring (symptomatic and non-symptomatic) displayed accelerated GMV decrease than BD non-offspring, in the hippocampus and anterior cingulate cortex. In contrast, the combined group of symptomatic participants (offspring and non-offspring) displayed slower GMV decrease than non-symptomatic participants, in the ventromedial prefrontal cortex. Larger GMV at baseline, and accelerated GMV decrease during follow-up, prospectively and longitudinally predicted positive global function changes. All results survived multiple-testing correction. CONCLUSIONS: These findings indicated that familial and symptomatic risks of BD are associated with distinct brain structural developments, and unraveled key brain developmental features of particularly vulnerable high-risk individuals to subsequent functional deterioration.

9.
Adv Sci (Weinh) ; 11(30): e2401059, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38863324

RESUMEN

Research highlights the significance of increased bursting in lateral habenula (LHb) neurons in depression and as a focal point for bright light treatment (BLT). However, the precise spike patterns of LHb neurons projecting to different brain regions during depression, their roles in depression development, and BLT's therapeutic action remain elusive. Here, LHb neurons are found projecting to the dorsal raphe nucleus (DRN), ventral tegmental area (VTA), and median raphe nucleus (MnR) exhibit increased bursting following aversive stimuli exposure, correlating with distinct depressive symptoms. Enhanced bursting in DRN-projecting LHb neurons is pivotal for anhedonia and anxiety, while concurrent bursting in LHb neurons projecting to the DRN, VTA, and MnR is essential for despair. Remarkably, reducing bursting in distinct LHb neuron subpopulations underlies the therapeutic effects of BLT on specific depressive behaviors. These findings provide valuable insights into the mechanisms of depression and the antidepressant action of BLT.


Asunto(s)
Depresión , Modelos Animales de Enfermedad , Habénula , Habénula/fisiología , Animales , Ratones , Masculino , Depresión/terapia , Conducta Animal , Ratones Endogámicos C57BL , Neuronas/fisiología , Fototerapia/métodos , Luz , Área Tegmental Ventral
10.
Neurosci Bull ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807019

RESUMEN

Alcohol abuse induces various neurological disorders including motor learning deficits, possibly by affecting neuronal and astrocytic activity. Physical exercise is one effective approach to remediate synaptic loss and motor deficits as shown by our previous works. In this study, we unrevealed the role of exercise training in the recovery of cortical neuronal and astrocytic functions. Using a chronic alcohol injection mouse model, we found the hyperreactivity of astrocytes along with dendritic spine loss plus lower neuronal activity in the primary motor cortex. Persistent treadmill exercise training, on the other hand, improved neural spine formation and inhibited reactive astrocytes, alleviating motor learning deficits induced by alcohol exposure. These data collectively support the potency of endurance exercise in the rehabilitation of motor functions under alcohol abuse.

11.
PLoS One ; 19(5): e0302742, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38768144

RESUMEN

Zeaxanthin dipalmitate (ZD) is a chemical extracted from wolfberry that protects degenerated photoreceptors in mouse retina. However, the pure ZD is expensive and hard to produce. In this study, we developed a method to enrich ZD from wolfberry on a production line and examined whether it may also protect the degenerated mouse retina. The ZD-enriched wolfberry extract (ZDE) was extracted from wolfberry by organic solvent method, and the concentration of ZD was identified by HPLC. The adult C57BL/6 mice were treated with ZDE or solvent by daily gavage for 2 weeks, at the end of the first week the animals were intraperitoneally injected with N-methyl-N-nitrosourea to induce photoreceptor degeneration. Then optomotor, electroretinogram, and immunostaining were used to test the visual behavior, retinal light responses, and structure. The final ZDE product contained ~30mg/g ZD, which was over 9 times higher than that from the dry fruit of wolfberry. Feeding degenerated mice with ZDE significantly improved the survival of photoreceptors, enhanced the retinal light responses and the visual acuity. Therefore, our ZDE product successfully alleviated retinal morphological and functional degeneration in mouse retina, which may provide a basis for further animal studies for possible applying ZDE as a supplement to treat degenerated photoreceptor in the clinic.


Asunto(s)
Modelos Animales de Enfermedad , Lycium , Ratones Endogámicos C57BL , Células Fotorreceptoras de Vertebrados , Extractos Vegetales , Degeneración Retiniana , Zeaxantinas , Animales , Lycium/química , Degeneración Retiniana/tratamiento farmacológico , Degeneración Retiniana/patología , Ratones , Extractos Vegetales/farmacología , Extractos Vegetales/química , Zeaxantinas/farmacología , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Células Fotorreceptoras de Vertebrados/patología , Electrorretinografía , Retina/efectos de los fármacos , Retina/patología , Retina/metabolismo , Visión Ocular/efectos de los fármacos , Masculino , Xantófilas/farmacología
12.
Acta Pharmacol Sin ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811774

RESUMEN

Exercise training effectively relieves anxiety disorders via modulating specific brain networks. The role of post-translational modification of proteins in this process, however, has been underappreciated. Here we performed a mouse study in which chronic restraint stress-induced anxiety-like behaviors can be attenuated by 14-day persistent treadmill exercise, in association with dramatic changes of protein phosphorylation patterns in the medial prefrontal cortex (mPFC). In particular, exercise was proposed to modulate the phosphorylation of Nogo-A protein, which drives the ras homolog family member A (RhoA)/ Rho-associated coiled-coil-containing protein kinases 1(ROCK1) signaling cascade. Further mechanistic studies found that liver-derived kynurenic acid (KYNA) can affect the kynurenine metabolism within the mPFC, to modulate this RhoA/ROCK1 pathway for conferring stress resilience. In sum, we proposed that circulating KYNA might mediate stress-induced anxiety-like behaviors via protein phosphorylation modification within the mPFC, and these findings shed more insights for the liver-brain communications in responding to both stress and physical exercise.

13.
Mol Psychiatry ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704506

RESUMEN

Autism spectrum disorder (ASD) encompasses a range of neurodevelopmental conditions. Different mutations on a single ASD gene contribute to heterogeneity of disease phenotypes, possibly due to functional diversity of generated isoforms. SHANK2, a causative gene in ASD, demonstrates this phenomenon, but there is a scarcity of tools for studying endogenous SHANK2 proteins in an isoform-specific manner. Here, we report a point mutation on SHANK2, which is found in a patient with autism, located on exon of the SHANK2B transcript variant (NM_133266.5), hereby SHANK2BY29X. This mutation results in an early stop codon and an aberrant splicing event that impacts SHANK2 transcript variants distinctly. Induced pluripotent stem cells (iPSCs) carrying this mutation, from the patient or isogenic editing, fail to differentiate into functional dopamine (DA) neurons, which can be rescued by genetic correction. Available SMART-Seq single-cell data from human midbrain reveals the abundance of SHANK2B transcript in the ALDH1A1 negative DA neurons. We then show that SHANK2BY29X mutation primarily affects SHANK2B expression and ALDH1A1 negative DA neurons in vitro during early neuronal developmental stage. Mice knocked in with the identical mutation exhibit autistic-like behavior, decreased occupancy of ALDH1A1 negative DA neurons and decreased dopamine release in ventral tegmental area (VTA). Our study provides novel insights on a SHANK2 mutation derived from autism patient and highlights SHANK2B significance in ALDH1A1 negative DA neuron.

14.
Neural Regen Res ; 19(12): 2588-2601, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38595278

RESUMEN

It has long been asserted that failure to recover from central nervous system diseases is due to the system's intricate structure and the regenerative incapacity of adult neurons. Yet over recent decades, numerous studies have established that endogenous neurogenesis occurs in the adult central nervous system, including humans'. This has challenged the long-held scientific consensus that the number of adult neurons remains constant, and that new central nervous system neurons cannot be created or renewed. Herein, we present a comprehensive overview of the alterations and regulatory mechanisms of endogenous neurogenesis following central nervous system injury, and describe novel treatment strategies that target endogenous neurogenesis and newborn neurons in the treatment of central nervous system injury. Central nervous system injury frequently results in alterations of endogenous neurogenesis, encompassing the activation, proliferation, ectopic migration, differentiation, and functional integration of endogenous neural stem cells. Because of the unfavorable local microenvironment, most activated neural stem cells differentiate into glial cells rather than neurons. Consequently, the injury-induced endogenous neurogenesis response is inadequate for repairing impaired neural function. Scientists have attempted to enhance endogenous neurogenesis using various strategies, including using neurotrophic factors, bioactive materials, and cell reprogramming techniques. Used alone or in combination, these therapeutic strategies can promote targeted migration of neural stem cells to an injured area, ensure their survival and differentiation into mature functional neurons, and facilitate their integration into the neural circuit. Thus can integration replenish lost neurons after central nervous system injury, by improving the local microenvironment. By regulating each phase of endogenous neurogenesis, endogenous neural stem cells can be harnessed to promote effective regeneration of newborn neurons. This offers a novel approach for treating central nervous system injury.

15.
Neural Regen Res ; 19(12): 2773-2784, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38595294

RESUMEN

JOURNAL/nrgr/04.03/01300535-202412000-00032/figure1/v/2024-04-08T165401Z/r/image-tiff For patients with chronic spinal cord injury, the conventional treatment is rehabilitation and treatment of spinal cord injury complications such as urinary tract infection, pressure sores, osteoporosis, and deep vein thrombosis. Surgery is rarely performed on spinal cord injury in the chronic phase, and few treatments have been proven effective in chronic spinal cord injury patients. Development of effective therapies for chronic spinal cord injury patients is needed. We conducted a randomized controlled clinical trial in patients with chronic complete thoracic spinal cord injury to compare intensive rehabilitation (weight-bearing walking training) alone with surgical intervention plus intensive rehabilitation. This clinical trial was registered at ClinicalTrials.gov (NCT02663310). The goal of surgical intervention was spinal cord detethering, restoration of cerebrospinal fluid flow, and elimination of residual spinal cord compression. We found that surgical intervention plus weight-bearing walking training was associated with a higher incidence of American Spinal Injury Association Impairment Scale improvement, reduced spasticity, and more rapid bowel and bladder functional recovery than weight-bearing walking training alone. Overall, the surgical procedures and intensive rehabilitation were safe. American Spinal Injury Association Impairment Scale improvement was more common in T7-T11 injuries than in T2-T6 injuries. Surgery combined with rehabilitation appears to have a role in treatment of chronic spinal cord injury patients.

16.
Nat Commun ; 15(1): 3034, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589429

RESUMEN

Chronic stress induces anxiety disorders via both neural pathways and circulating factors. Although many studies have elucidated the neural circuits involved in stress-coping behaviors, the origin and regulatory mechanism of peripheral cytokines in behavioural regulation under stress conditions are not fully understood. Here, we identified a serum cytokine, lipocalin 2 (LCN2), that was upregulated in participants with anxiety disorders. Using a mouse model of chronic restraint stress (CRS), circulating LCN2 was found to be related to stress-induced anxiety-like behaviour via modulation of neural activity in the medial prefrontal cortex (mPFC). These results suggest that stress increases hepatic LCN2 via a neural pathway, leading to disrupted cortical functions and behaviour.


Asunto(s)
Ansiedad , Corteza Prefrontal , Humanos , Lipocalina 2/metabolismo , Corteza Prefrontal/fisiología , Ansiedad/metabolismo , Trastornos de Ansiedad , Hígado/metabolismo
18.
Neural Regen Res ; 19(10): 2290-2298, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38488563

RESUMEN

JOURNAL/nrgr/04.03/01300535-202410000-00030/figure1/v/2024-02-06T055622Z/r/image-tiff Photoreceptor cell degeneration leads to blindness, for which there is currently no effective treatment. Our previous studies have shown that Lycium barbarum (L. barbarum) polysaccharide (LBP) protects degenerated photoreceptors in rd1, a transgenic mouse model of retinitis pigmentosa. L. barbarum glycopeptide (LbGP) is an immunoreactive glycoprotein extracted from LBP. In this study, we investigated the potential protective effect of LbGP on a chemically induced photoreceptor-degenerative mouse model. Wild-type mice received the following: oral administration of LbGP as a protective pre-treatment on days 1-7; intraperitoneal administration of 40 mg/kg N-methyl-N-nitrosourea to induce photoreceptor injury on day 7; and continuation of orally administered LbGP on days 8-14. Treatment with LbGP increased photoreceptor survival and improved the structure of photoreceptors, retinal photoresponse, and visual behaviors of mice with photoreceptor degeneration. LbGP was also found to partially inhibit the activation of microglia in N-methyl-N-nitrosourea-injured retinas and significantly decreased the expression of two pro-inflammatory cytokines. In conclusion, LbGP effectively slowed the rate of photoreceptor degeneration in N-methyl-N-nitrosourea-injured mice, possibly through an anti-inflammatory mechanism, and has potential as a candidate drug for the clinical treatment of photoreceptor degeneration.

19.
NPJ Regen Med ; 9(1): 4, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38242900

RESUMEN

Neuromyelitis optica (NMO) is a severe autoimmune inflammatory disease of the central nervous system that affects motor function and causes relapsing disability. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have been used extensively in the treatment of various inflammatory diseases, due to their potent regulatory roles that can mitigate inflammation and repair damaged tissues. However, their use in NMO is currently limited, and the mechanism underlying the beneficial effects of hUC-MSCs on motor function in NMO remains unclear. In this study, we investigate the effects of hUC-MSCs on the recovery of motor function in an NMO systemic model. Our findings demonstrate that milk fat globule epidermal growth 8 (MFGE8), a key functional factor secreted by hUC-MSCs, plays a critical role in ameliorating motor impairments. We also elucidate that the MFGE8/Integrin αvß3/NF-κB signaling pathway is partially responsible for structural and functional recovery, in addition to motor functional enhancements induced by hUC-MSC exposure. Taken together, these findings strongly support the involvement of MFGE8 in mediating hUC-MSCs-induced improvements in motor functional recovery in an NMO mouse model. In addition, this provides new insight on the therapeutic potential of hUC-MSCs and the mechanisms underlying their beneficial effects in NMO.

20.
Neural Regen Res ; 19(9): 2036-2040, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38227533

RESUMEN

JOURNAL/nrgr/04.03/01300535-202409000-00036/figure1/v/2024-01-16T170235Z/r/image-tiff Strong evidence has accumulated to show a correlation between depression symptoms and inflammatory responses. Moreover, anti-inflammatory treatment has shown partial effectiveness in alleviating depression symptoms. Lycium barbarum polysaccharide (LBP), derived from Goji berries, exhibits notable antioxidative and anti-inflammatory properties. In our recent double-blinded randomized placebo-controlled trial, we found that LBP significantly reduced depressive symptoms in adolescents with subthreshold depression. It is presumed that the antidepressant effect of LBP may be associated with its influence on inflammatory cytokines. In the double-blinded randomized controlled trial, we enrolled 29 adolescents with subthreshold depression and randomly divided them into an LBP group and a placebo group. In the LBP group, adolescents were given 300 mg/d LBP. A 6-week follow up was completed by 24 adolescents, comprising 14 adolescents from the LBP group (15.36 ± 2.06 years, 3 men and 11 women) and 10 adolescents from the placebo group (14.9 ± 1.6 years, 2 men and 8 women). Our results showed that after 6 weeks of treatment, the interleukin-17A level in the LBP group was lower than that in the placebo group. Network analysis showed that LBP reduced the correlations and connectivity between inflammatory factors, which were associated with the improvement in depressive symptoms. These findings suggest that 6-week administration of LBP suppresses the immune response by reducing interleukin-17A level, thereby exerting an antidepressant effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...