Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biol Reprod ; 110(4): 772-781, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38195246

RESUMEN

Cisplatin, a platinum-containing alkylating agent, is used in the treatment of various tumors owing to its potent antitumor activity. However, it causes permanent and adverse effects, particularly hearing loss and depletion of ovarian reserve. Until recently, there were no clinically available protective agents to mitigate the adverse side effects of cisplatin-induced cytotoxicity. In 2022, sodium thiosulfate (STS) was approved by the Food and Drug Administration for mitigating hearing loss in children and adolescents undergoing cisplatin treatment. Consequently, our investigation aimed to determine if STS could protect ovarian reserve against cisplatin-induced gonadotoxicity. In an ex vivo culture, the cisplatin-only group exhibited a loss of primordial follicles, while post-STS administration after cisplatin exposure effectively protected primordial follicles. However, when post-STS was administrated either 6 or 4 h after cisplatin exposure, it did not confer protection against cisplatin-induced gonadotoxicity in postnatal day 7 or adolescent mouse models. Immunofluorescence assays using γH2AX and cPARP revealed that oocytes within primordial follicles exhibited DNA damage after cisplatin exposure, irrespective of post-STS administration. This underscores the rapid and heightened sensitivity of oocytes to gonadotoxicity. In addition, oocytes demonstrated an increased expression of pCHK2 rather than pERK, suggesting that the pathway leading to oocyte death differs from the pathway observed in the inner ear cell death following cisplatin exposure. These results imply that while the administration of STS after cisplatin is highly beneficial in preventing hearing loss, it does not confer a protective effect on the ovaries in mouse models.


Asunto(s)
Antineoplásicos , Pérdida Auditiva , Reserva Ovárica , Tiosulfatos , Ratones , Niño , Femenino , Animales , Adolescente , Humanos , Cisplatino/toxicidad , Antineoplásicos/toxicidad , Pérdida Auditiva/inducido químicamente
2.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805821

RESUMEN

Drought is the most serious abiotic stress, which significantly reduces crop productivity. The phytohormone ABA plays a pivotal role in regulating stomatal closing upon drought stress. Here, we characterized the physiological function of AtBBD1, which has bifunctional nuclease activity, on drought stress. We found that AtBBD1 localized to the nucleus and cytoplasm, and was expressed strongly in trichomes and stomatal guard cells of leaves, based on promoter:GUS constructs. Expression analyses revealed that AtBBD1 and AtBBD2 are induced early and strongly by ABA and drought, and that AtBBD1 is also strongly responsive to JA. We then compared phenotypes of two AtBBD1-overexpression lines (AtBBD1-OX), single knockout atbbd1, and double knockout atbbd1/atbbd2 plants under drought conditions. We did not observe any phenotypic difference among them under normal growth conditions, while OX lines had greatly enhanced drought tolerance, lower transpirational water loss, and higher proline content than the WT and KOs. Moreover, by measuring seed germination rate and the stomatal aperture after ABA treatment, we found that AtBBD1-OX and atbbd1 plants showed significantly higher and lower ABA-sensitivity, respectively, than the WT. RNA sequencing analysis of AtBBD1-OX and atbbd1 plants under PEG-induced drought stress showed that overexpression of AtBBD1 enhances the expression of key regulatory genes in the ABA-mediated drought signaling cascade, particularly by inducing genes related to ABA biosynthesis, downstream transcription factors, and other regulatory proteins, conferring AtBBD1-OXs with drought tolerance. Taken together, we suggest that AtBBD1 functions as a novel positive regulator of drought responses by enhancing the expression of ABA- and drought stress-responsive genes as well as by increasing proline content.


Asunto(s)
Ácido Abscísico/metabolismo , Adaptación Fisiológica/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Endonucleasas/genética , Regulación de la Expresión Génica de las Plantas , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Proteínas de Arabidopsis/agonistas , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Citoplasma/metabolismo , Sequías , Endonucleasas/antagonistas & inhibidores , Endonucleasas/metabolismo , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacología , Células Vegetales/efectos de los fármacos , Células Vegetales/enzimología , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/enzimología , Estomas de Plantas/genética , Plantas Modificadas Genéticamente , Prolina/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...