Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37299061

RESUMEN

Future predictions due to climate change are of decreases in rainfall and longer drought periods. The search for new tolerant crops is an important strategy. The objective of this study was to evaluate the effect of water stress on the physiology and productivity of crops with potential for growing in the off-season period in the Cerrado, and evaluate correlations with the temperature of the canopy obtained by means of thermography. The experiment was conducted under field conditions, with experimental design in randomized blocks, in a split-plot scheme and four replications. The plots were: common bean (Phaseolus vulgaris); amaranth (Amaranthus cruentus); quinoa (Chenopodium quinoa); and buckwheat (Fagopyrum esculentum). The subplots were composed of four water regimes: maximum water regime (WR 535 mm), high-availability regime (WR 410 mm), off-season water regime (WR 304 mm) and severe water regime (WR 187 mm). Under WR 304 mm, the internal concentration of CO2 and photosynthesis were reduced by less than 10% in amaranth. Common bean and buckwheat reduced 85% in photosynthesis. The reduction in water availability increased the canopy temperature in the four crops and, in general, common bean was the most sensitive species, while quinoa had the lowest canopy temperatures. Furthermore, canopy temperature correlated negatively with grain yield, biomass yield and gas exchange across all plant species, thus thermal imaging of the canopy represents a promising tool for monitoring crop productivity for farmers, For the identification of crops with high water use management for research.

2.
Plants (Basel) ; 11(17)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36079581

RESUMEN

Coffee farmers have faced problems due to drought periods, with irrigation being necessary. In this sense, this study aimed to evaluate the responses to different levels and durations of water deficit in arabica coffee genotypes in the Cerrado region. The experiment consisted of three Coffea arabica genotypes and five water regimes: full irrigation (FI 100 and FI 50-full irrigation with 100% and 50% replacement of evapotranspiration, respectively), water deficit (WD 100 and WD 50-water deficit from June to September, with 100% and 50% replacement of evapotranspiration, respectively) and rainfed (without irrigation). The variables evaluated were gas exchange, relative water content (RWC) and productivity. The results showed that during stress, plants under the FI water regime showed higher gas exchange and RWC, differently from what occurred in the WD and rainfed treatments; however, after irrigation, coffee plants under WDs regained their photosynthetic potential. Rainfed and WD 50 plants had more than 50% reduction in RWC compared to FIs. The Iapar 59 cultivar was the most productive genotype and the E237 the lowest. Most importantly, under rainfed conditions, the plants showed lower physiological and productive potential, indicating the importance of irrigation in Coffea arabica in the Brazilian Cerrado.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...