Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36616175

RESUMEN

Herbaspirillum seropedicae is an endophytic bacterium that can fix nitrogen and synthesize phytohormones, which can lead to a plant growth-promoting effect when used as a microbial inoculant. Studies focused on mechanisms of action are crucial for a better understanding of the bacteria-plant interaction and optimization of plant growth-promoting response. This work aims to understand the underlined mechanisms responsible for the early stimulatory growth effects of H. seropedicae inoculation in maize. To perform these studies, we combined transcriptomic and proteomic approaches with physiological analysis. The results obtained eight days after inoculation (d.a.i) showed increased root biomass (233 and 253%) and shoot biomass (249 and 264%), respectively, for the fresh and dry mass of maize-inoculated seedlings and increased green content and development. Omics data analysis, before a positive biostimulation phenotype (5 d.a.i.) revealed that inoculation increases N-uptake and N-assimilation machinery through differentially expressed nitrate transporters and amino acid pathways, as well carbon/nitrogen metabolism integration by the tricarboxylic acid cycle and the polyamine pathway. Additionally, phytohormone levels of root and shoot tissues increased in bacterium-inoculated-maize plants, leading to feedback regulation by the ubiquitin-proteasome system. The early biostimulatory effect of H. seropedicae partially results from hormonal modulation coupled with efficient nutrient uptake-assimilation and a boost in primary anabolic metabolism of carbon-nitrogen integrative pathways.

2.
Biochimie ; 144: 160-168, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29133118

RESUMEN

During feeding with blood meal, female Aedes aegypti can transmit infectious agents, such as dengue, yellow fever, chikungunya and Zika viruses. Dengue virus causes human mortality in tropical regions of the world, and there is no specific treatment or vaccine with maximum efficiency being used for these infections. In the vector-virus interaction, the production of several molecules is modulated by both mosquitoes and invading agents. However, little information is available about these molecules in the Ae. aegypti mosquito during dengue infection. Inhibitors of the pacifastin family have been described to participate in the immune response of insects and Pac2 is the only gene of this family present in Ae. aegypti being then chosen for investigation. Pac2 was expressed in E. coli, purified and analyzed by mass spectrometry and SDS-PAGE. The Pac2 transcript was detected by qPCR, and its protein levels were assessed by Western blotting. The inhibitory activity of Pac2 was measured using its Ki, IC50 and zymography. Mosquito infections with DENV were introduced with the Brazilian ACS-46 DENV-2 strain propagated in C6/36 cells. In the present work, we showed that it is possibly involved in the interaction of the mosquitoes with the dengue virus. The Pac2 transcript was detected in larvae and in both the salivary gland and midgut of Ae. aegypti females, while the native protein was identified in females 3 h post-blood meal. Pac2 is a strong inhibitor of trypsin-like and thrombin-like proteases, which are present in 4th instar larvae midgut and females 24 h after blood meal. During DENV infection, up regulation of Pac2 expression occurs in the salivary gland and midgut. Pac2 is the first Pacifastin inhibitor member described in mosquitoes. Our results suggest that Pac2 acts on mosquito serine proteases, mainly the trypsin-like type, and is under transcriptional control by virus infection signals to allow its survival in the vector or by the mosquito as a defense mechanism against virus infection.


Asunto(s)
Aedes/metabolismo , Aedes/virología , Virus del Dengue/fisiología , Inhibidores de Serina Proteinasa/metabolismo , Aedes/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Cinética , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/genética , Especificidad por Sustrato
3.
Parasit Vectors ; 8: 511, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26444542

RESUMEN

BACKGROUND: Dengue, transmitted primarily by the bites of infected Aedes aegypti L., is transmitted to millions of individuals each year in tropical and subtropical areas. Dengue control strategies are primarily based on controlling the vector, using insecticides, but the appearance of resistance poses new challenges. Recently, highly selective protease inhibitors by phage display were obtained for digestive enzymes of the 4th instar larvae (L4) midgut. These mutants were not confirmed as a larvicide due to the low yield of the expression of these inhibitors. In the present study, chimera molecules were constructed based on the mutations at positions P1-P4' selected previously. The T6, T23 and T149 mutants were mixed with another Kunitz inhibitor, domain 1 of the inhibitor boophilin (D1). METHODS: The chimeras T6/D1, T149/D1 and T23/D1 were expressed at high levels in P. pastoris yeast, purified by ionic exchange chromatography and their homogeneity was analyzed by SDS-PAGE. The chimera inhibitors were assayed against larval trypsin, chymotrypsin and elastase using specific chromogenic substrates. The inhibitors were assayed for their larvicide potential against L4. RESULTS: The chimeras exhibited strong inhibitory activities against the larval digestive enzymes in a dose-dependent manner. T6/D1, T149/D1 and T23/D1 exhibited strong larvicidal activity against L4 of Ae. aegypti with inhibitor concentrations in the µM range. A synergistic increase in mortality was observed when a mixture of the three chimeric inhibitors was tested. CONCLUSIONS: The strategy for constructing the chimeric inhibitors was successful. The chimeras showed strong larvicidal activity against Ae. aegypti. In the future, our findings can be used to design synthetic inhibitors for larvae digestive enzymes as an alternative method to control the dengue vector.


Asunto(s)
Aedes/efectos de los fármacos , Dengue/prevención & control , Isoleucina/análogos & derivados , Inhibidores de Serina Proteinasa/genética , Aedes/enzimología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Colestenos/metabolismo , Colestenos/farmacología , Humanos , Insecticidas/metabolismo , Insecticidas/farmacología , Isoleucina/genética , Isoleucina/metabolismo , Isoleucina/farmacología , Larva/efectos de los fármacos , Larva/enzimología , Mutagénesis , Mutación , Análisis de Secuencia de ADN , Inhibidores de Serina Proteinasa/metabolismo , Inhibidores de Serina Proteinasa/farmacología
4.
Insect Biochem Mol Biol ; 43(1): 9-16, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23142191

RESUMEN

Dengue is a serious disease transmitted by the mosquito Aedes aegypti during blood meal feeding. It is estimated that the dengue virus is transmitted to millions of individuals each year in tropical and subtropical areas. Dengue control strategies have been based on controlling the vector, Ae. aegypti, using insecticide, but the emergence of resistance poses new challenges. The aim of this study was the identification of specific protease inhibitors of the digestive enzymes from Ae. aegypti larvae, which may serve as a prospective alternative biocontrol method. High affinity protein inhibitors were selected by all of the digestive serine proteases of the 4th instar larval midgut, and the specificity of these inhibitors was characterized. These inhibitors were obtained from a phage library displaying variants of HiTI, a trypsin inhibitor from Haematobia irritans, that are mutated in the reactive loop (P1-P4'). Based on the selected amino acid sequence pattern, seven HiTI inhibitor variants were cloned, expressed and purified. The results indicate that the HiTI variants named T6 (RGGAV) and T128 (WNEGL) were selected by larval trypsin-like (IC(50) of 1.1 nM) and chymotrypsin-like enzymes (IC(50) of 11.6 nM), respectively. The variants T23 (LLGGL) and T149 (GGVWR) inhibited both larval chymotrypsin-like (IC(50) of 4.2 nM and 29.0 nM, respectively) and elastase-like enzymes (IC(50) of 1.2 nM for both). Specific inhibitors were successfully obtained for the digestive enzymes of Ae. aegypti larvae by phage display. Our data also strongly suggest the presence of elastase-like enzymes in Ae. aegypti larvae. The HiTI variants T6 and T23 are good candidates for the development as a larvicide to control the vector.


Asunto(s)
Aedes/enzimología , Proteínas de Insectos/antagonistas & inhibidores , Insectos Vectores/enzimología , Serina Endopeptidasas/metabolismo , Inhibidores de Tripsina/aislamiento & purificación , Secuencia de Aminoácidos , Animales , Bovinos , Dengue/prevención & control , Larva/enzimología , Datos de Secuencia Molecular , Muscidae/genética , Mutación , Biblioteca de Péptidos , Inhibidores de Tripsina/farmacología
5.
Vet Parasitol ; 187(3-4): 521-8, 2012 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-22341830

RESUMEN

Rhipicephalus (Boophilus) microplus is an ectoparasite responsible for an important decrease in meat, milk and leather production, caused both by cattle blood loss and by the transmission of anaplasmosis and babesiosis. R. microplus is a rich source of serine protease inhibitors, including the trypsin inhibitors BmTI-A and BmTI-6, the subtilisin inhibitor BmSI, and the recently described thrombin inhibitor, boophilin. Boophilin is a double Kunitz-type thrombin inhibitor, with the unusual ability to form a ternary complex with a second (non-thrombin) serine proteinase molecule. The large-scale expression and purification of boophilin and of its isolated N-terminal (D1) domain in Pichia pastoris, its expression profile, and the effect of RNAi-mediated gene silencing in tick egg production are reported. Full-length boophilin and D1 were expressed at 21 and 37.5mg/L of culture, respectively. Purified boophilin inhibited trypsin (K(i) 0.65 nM), neutrophil elastase (K(i) 21 nM) and bovine thrombin (K(i) 57 pM), while D1 inhibited trypsin and neutrophil elastase (K(i) of 2.0 and 129 nM, respectively), but not thrombin. Boophilin gene silencing using RNAi resulted in 20% reduction in egg weight production, suggesting that the expression of boophilin in this life stage would be important but not vital, probably due to functional overlap with other serine proteinase inhibitors in the midgut of R. microplus. Considering our data, Boophilin could be combining with other antigen in a vaccine production for tick control.


Asunto(s)
Proteínas de Artrópodos/metabolismo , Tracto Gastrointestinal/metabolismo , Rhipicephalus/metabolismo , Trombina/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Antígenos/inmunología , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/farmacología , Clonación Molecular , Regulación de la Expresión Génica/fisiología , Datos de Secuencia Molecular , Interferencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...