Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(18): 20003-20011, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38737048

RESUMEN

Bacterial nanocellulose (BNC) biofilms, produced by various bacterial species, such as Gluconacetobacter xylinus, represent a highly promising multifunctional material characterized by distinctive physiochemical properties. These biofilms have demonstrated remarkable versatility as nano biomaterials, finding extensive applications across medical, defense, electronics, optics, and food industries. In contrast to plant cellulose, BNC biofilms exhibit numerous advantages, including elevated purity and crystallinity, expansive surface area, robustness, and excellent biocompatibility, making them exceptional multifunctional materials. However, their production with consistent morphological properties and their transformation into practical forms present challenges. This difficulty often arises from the heterogeneity in cell density, which is influenced by the presence of N-acyl-homoserine lactones (AHLs) serving as quorum sensing signaling molecules during the biosynthesis of BNC biofilms. In this study, we employed surface characterization methodologies including scanning electron microscopy, energy-dispersive spectroscopy, diffuse reflectance infrared Fourier transform spectroscopy, and atomic force microscopy to characterize BNC biofilms derived from growth media supplemented with varying concentrations of distinct N-acyl-homoserine lactone signaling molecules. The data obtained through these analytical techniques elucidated that the morphological properties of the BNC biofilms were influenced by the specific AHLs, signaling molecules, introduced into the growth media. These findings lay the groundwork for future exploration of leveraging synthetic biology and biomimetic methods for tailoring BNC with predetermined morphological properties.

2.
Molecules ; 26(20)2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34684680

RESUMEN

A series of fourteen 2-aryl-3-phenyl-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-ones was prepared at room temperature by T3P-mediated cyclization of N-phenyl-C-aryl imines with thionicotinic acid, two difficult substrates. The reactions were operationally simple, did not require specialized equipment or anhydrous solvents, could be performed as either two or three component reactions, and gave moderate-good yields as high as 63%. This provides ready access to N-phenyl compounds in this family, which have been generally difficult to prepare. As part of the study, the first crystal structure of neutral thionicotinic acid is also reported, and showed the molecule to be in the form of the thione tautomer. Additionally, the synthesized compounds were tested against T. brucei, the causative agent of Human African Sleeping Sickness. Screening at 50 µM concentration showed that five of the compounds strongly inhibited growth and killed parasites.


Asunto(s)
Tiazinas , Trypanosoma brucei brucei/efectos de los fármacos , Anhídridos/química , Animales , Antiprotozoarios/síntesis química , Antiprotozoarios/farmacología , Organofosfonatos/química , Tiazinas/síntesis química , Tiazinas/farmacología
3.
Am J Physiol Endocrinol Metab ; 319(2): E265-E275, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32459525

RESUMEN

Saturated fatty acids (SFAs) are implicated in muscle inflammation/cell stress and insulin resistance, but the catalog of factors involved is incomplete. SFA derivatives that accumulate with mismatched FA availability and FA oxidation (FAO) are likely involved, and evidence has emerged that select acylcarnitines should be considered. To understand if excessive long-chain acylcarnitine accumulation and limited FAO associate with lipotoxicity, carnitine palmitoyltransferase 2 knockout C2C12 cells were generated (CPT2 KO). CPT2 KO was confirmed by Western blot, increased palmitoylcarnitine accumulation, and loss of FAO capacity. There was no effect of CPT2 KO on palmitic acid (PA) concentration-dependent increases in media IL-6 or adenylate kinase. PA at 200 and 500 µM did not trigger cell stress responses (phospho-Erk, -JNK, or -p38) above that of vehicle in WT or CPT2 KO cells. In contrast, loss of CPT2 exacerbated PA-induced insulin resistance (acute phospho-Akt; 10 or 100 nM insulin) by as much as ~50-96% compared with WT. Growing cells in carnitine-free media abolished differences between WT and CPT2 KO, but this did not fully rescue PA-induced insulin resistance. The results suggest that PA-induced insulin resistance stems in part from palmitoylcarnitine accumulation, further supporting the hypothesis that select acylcarnitines participate in cell signaling and, when in excess, can compromise cell function. Since carnitine-free conditions could not fully rescue insulin signaling, and CPT2 KO did not alter cell stress responses, the majority of PA-induced "lipotoxicity" in C2C12 myotubes cannot be attributed to palmitoylcarnitine alone.


Asunto(s)
Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/fisiología , Técnicas de Inactivación de Genes , Resistencia a la Insulina/fisiología , Fibras Musculares Esqueléticas/fisiología , Ácido Palmítico/farmacología , Animales , Línea Celular , Ratones , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/efectos de los fármacos , Palmitoilcarnitina/metabolismo , Transducción de Señal/fisiología
4.
Am J Physiol Endocrinol Metab ; 318(5): E701-E709, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32101032

RESUMEN

Little is known about xenometabolites in human metabolism, particularly under exercising conditions. Previously, an exercise-modifiable, likely xenometabolite derivative, cis-3,4-methylene-heptanoylcarnitine, was reported in human plasma. Here, we identified trans-3,4-methylene-heptanoylcarnitine, and its cis-isomer, in plasma and skeletal muscle by liquid chromatography-mass spectrometry. We analyzed the regulation by exercise and the arterial-to-venous differences of these cyclopropane ring-containing carnitine esters over the hepatosplanchnic bed and the exercising leg in plasma samples obtained in three separate studies from young, lean and healthy males. Compared with other medium-chain acylcarnitines, the plasma concentrations of the 3,4-methylene-heptanoylcarnitine isomers only marginally increased with exercise. Both isomers showed a more than twofold increase in the skeletal muscle tissue of the exercising leg; this may have been due to the net effect of fatty acid oxidation in the exercising muscle and uptake from blood. The latter idea is supported by a more than twofold increased net uptake in the exercising leg only. Both isomers showed a constant release from the hepatosplanchnic bed, with an increased release of the trans-isomer after exercise. The isomers differ in their plasma concentration, with a four times higher concentration of the cis-isomer regardless of the exercise state. This is the first approach studying kinetics and fluxes of xenolipid isomers from tissues under exercise conditions, supporting the hypothesis that hepatic metabolism of cyclopropane ring-containing fatty acids is one source of these acylcarnitines in plasma. The data also provide clear evidence for an exercise-dependent regulation of xenometabolites, opening perspectives for future studies about the physiological role of this largely unknown class of metabolites.


Asunto(s)
Carnitina/análogos & derivados , Carnitina/metabolismo , Ejercicio Físico/fisiología , Músculo Esquelético/metabolismo , Humanos , Masculino , Adulto Joven
5.
PLoS One ; 9(8): e104971, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25127027

RESUMEN

BACKGROUND: Insulin resistance and early type-2 diabetes are highly prevalent. However, it is unknown whether Intralipid® and sevoflurane protect the early diabetic heart against ischemia-reperfusion injury. METHODS: Early type-2 diabetic hearts from Sprague-Dawley rats fed for 6 weeks with fructose were exposed to 15 min of ischemia and 30 min of reperfusion. Intralipid® (1%) was administered at the onset of reperfusion. Peri-ischemic sevoflurane (2 vol.-%) served as alternative protection strategy. Recovery of left ventricular function was recorded and the activation of Akt and ERK 1/2 was monitored. Mitochondrial function was assessed by high-resolution respirometry and mitochondrial ROS production was measured by Amplex Red and aconitase activity assays. Acylcarnitine tissue content was measured and concentration-response curves of complex IV inhibition by palmitoylcarnitine were obtained. RESULTS: Intralipid® did not exert protection in early diabetic hearts, while sevoflurane improved functional recovery. Sevoflurane protection was abolished by concomitant administration of the ROS scavenger N-2-mercaptopropionyl glycine. Sevoflurane, but not Intralipid® produced protective ROS during reperfusion, which activated Akt. Intralipid® failed to inhibit respiratory complex IV, while sevoflurane inhibited complex I. Early diabetic hearts exhibited reduced carnitine-palmitoyl-transferase-1 activity, but palmitoylcarnitine could not rescue protection and enhance postischemic functional recovery. Cardiac mitochondria from early diabetic rats exhibited an increased content of subunit IV-2 of respiratory complex IV and of uncoupling protein-3. CONCLUSIONS: Early type-2 diabetic hearts lose complex IV-mediated protection by Intralipid® potentially due to a switch in complex IV subunit expression and increased mitochondrial uncoupling, but are amenable to complex I-mediated sevoflurane protection.


Asunto(s)
Cardiotónicos/uso terapéutico , Diabetes Mellitus Tipo 2/complicaciones , Emulsiones Grasas Intravenosas/uso terapéutico , Corazón/efectos de los fármacos , Éteres Metílicos/uso terapéutico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Fosfolípidos/uso terapéutico , Aceite de Soja/uso terapéutico , Animales , Diabetes Mellitus Tipo 2/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Emulsiones/uso terapéutico , Fructosa/metabolismo , Canales Iónicos/metabolismo , Masculino , Proteínas Mitocondriales/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Sevoflurano , Transducción de Señal/efectos de los fármacos , Proteína Desacopladora 3
6.
PLoS One ; 9(1): e87205, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24498043

RESUMEN

BACKGROUND: Intralipid® administration at reperfusion elicits protection against myocardial ischemia-reperfusion injury. However, the underlying mechanisms are not fully understood. METHODS: Sprague-Dawley rat hearts were exposed to 15 min of ischemia and 30 min of reperfusion in the absence or presence of Intralipid® 1% administered at the onset of reperfusion. In separate experiments, the reactive oxygen species (ROS) scavenger N-(2-mercaptopropionyl)-glycine was added either alone or with Intralipid®. Left ventricular work and activation of Akt, STAT3, and ERK1/2 were used to evaluate cardioprotection. ROS production was assessed by measuring the loss of aconitase activity and the release of hydrogen peroxide using Amplex Red. Electron transport chain complex activities and proton leak were measured by high-resolution respirometry in permeabilized cardiac fibers. Titration experiments using the fatty acid intermediates of Intralipid® palmitoyl-, oleoyl- and linoleoylcarnitine served to determine concentration-dependent inhibition of complex IV activity and mitochondrial ROS release. RESULTS: Intralipid® enhanced postischemic recovery and activated Akt and Erk1/2, effects that were abolished by the ROS scavenger N-(2-mercaptopropionyl)glycine. Palmitoylcarnitine and linoleoylcarnitine, but not oleoylcarnitine concentration-dependently inhibited complex IV. Only palmitoylcarnitine reached high tissue concentrations during early reperfusion and generated significant ROS by complex IV inhibition. Palmitoylcarnitine (1 µM), administered at reperfusion, also fully mimicked Intralipid®-mediated protection in an N-(2-mercaptopropionyl)-glycine -dependent manner. CONCLUSIONS: Our data describe a new mechanism of postconditioning cardioprotection by the clinically available fat emulsion, Intralipid®. Protection is elicited by the fatty acid intermediate palmitoylcarnitine, and involves inhibition of complex IV, an increase in ROS production and activation of the RISK pathway.


Asunto(s)
Cardiotónicos/farmacología , Complejo IV de Transporte de Electrones/antagonistas & inhibidores , Daño por Reperfusión Miocárdica/metabolismo , Palmitoilcarnitina/metabolismo , Fosfolípidos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Aceite de Soja/farmacología , Animales , Carnitina/análogos & derivados , Carnitina/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Emulsiones/farmacología , Corazón/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Función Ventricular Izquierda/efectos de los fármacos
7.
Anal Biochem ; 401(1): 114-24, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20184857

RESUMEN

The measurement of acyl-CoA dehydrogenase activities is an essential part of the investigation of patients with suspected defects in fatty acid oxidation. Multiple methods are available for the synthesis of the substrates used for measuring acyl-CoA dehydrogenase activities; however, the yields are low and the products are used without purification. In addition, the reported characterization of acyl-CoAs focuses on the CoA moiety, not on the acyl group. Here we describe the synthesis of three medium-chain acyl-CoAs from mixed anhydrides of the fatty acids using an aqueous-organic solvent mixture optimized to obtain the highest yield. First, cis-4-decenoic acid and 2,6-dimethylheptanoic acid were prepared (3-phenylpropionic acid is commercially available). These were characterized by gas chromatography/mass spectrometry (GC/MS), (1)H nuclear magnetic resonance (NMR), and (13)C NMR. Then cis-4-decenoyl-CoA, 3-phenylpropionyl-CoA, and 2,6-dimethylheptanoyl-CoA were synthesized. These were then purified by ion exchange solid-phase extraction using 2-(2-pyridyl)ethyl-functionalized silica gel, followed by reversed-phase semipreparative high-performance liquid chromatography with ultraviolet detection (HPLC-UV). The purified acyl-CoAs were characterized by analytical HPLC-UV followed by data-dependent tandem mass spectrometry (MS/MS) analysis on the largest responding MS mass (HPLC-UV-MS-MS/MS) and (13)C NMR. The yields of the purified acyl-CoAs were between 75% and 78% based on coenzyme A trilithium salt (CoASH). Acyl-CoA dehydrogenase activities were measured in rat skeletal muscle mitochondria using, as substrates, the synthesized cis-4-decenoyl-CoA, 3-phenylpropionyl-CoA, and 2,6-dimethylheptanoyl-CoA. These results were compared with the results using our standard substrates butyryl-CoA, octanoyl-CoA, and palmitoyl-CoA.


Asunto(s)
Acilcoenzima A/síntesis química , Coenzima A/síntesis química , Acilcoenzima A/química , Acilcoenzima A/aislamiento & purificación , Coenzima A/química , Coenzima A/aislamiento & purificación , Cromatografía de Gases y Espectrometría de Masas , Espectroscopía de Resonancia Magnética , Extracción en Fase Sólida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...