Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Glia ; 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613395

RESUMEN

The plant homeodomain finger protein Phf8 is a histone demethylase implicated by mutation in mice and humans in neural crest defects and neurodevelopmental disturbances. Considering its widespread expression in cell types of the central nervous system, we set out to determine the role of Phf8 in oligodendroglial cells to clarify whether oligodendroglial defects are a possible contributing factor to Phf8-dependent neurodevelopmental disorders. Using loss- and gain-of-function approaches in oligodendroglial cell lines and primary cell cultures, we show that Phf8 promotes the proliferation of rodent oligodendrocyte progenitor cells and impairs their differentiation to oligodendrocytes. Intriguingly, Phf8 has a strong positive impact on Olig2 expression by acting on several regulatory regions of the gene and changing their histone modification profile. Taking the influence of Olig2 levels on oligodendroglial proliferation and differentiation into account, Olig2 likely acts as an important downstream effector of Phf8 in these cells. In line with such an effector function, ectopic Olig2 expression in Phf8-deficient cells rescues the proliferation defect. Additionally, generation of human oligodendrocytes from induced pluripotent stem cells did not require PHF8 in a system that relies on forced expression of Olig2 during oligodendroglial induction. We conclude that Phf8 may impact nervous system development at least in part through its action in oligodendroglial cells.

2.
Sci Rep ; 13(1): 22272, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097655

RESUMEN

Genome-wide association studies identified a single nucleotide polymorphism (SNP) downstream of the transcription factor Sox8, associated with an increased risk of multiple sclerosis (MS). Sox8 is known to influence oligodendrocyte terminal differentiation and is involved in myelin maintenance by mature oligodendrocytes. The possible link of a Sox8 related SNP and MS risk, along with the role of Sox8 in oligodendrocyte physiology prompted us to investigate its relevance during de- and remyelination using the cuprizone model. Sox8-/- mice and wildtype littermates received a cuprizone diet for 5 weeks (wk). Sox8-/- mice showed reduced motor performance and weight compared to wildtype controls. Brains were histologically analysed at the maximum of demyelination (wk 5) and on two time points during remyelination (wk 5.5 and wk 6) for oligodendroglial, astroglial, microglial and myelin markers. We identified reduced proliferation of oligodendrocyte precursor cells at wk 5 as well as reduced numbers of mature oligodendrocytes in Sox8-/- mice at wk 6. Moreover, analysis of myelin markers revealed a delay in remyelination in the Sox8-/- group, demonstrating the potential importance of Sox8 in remyelination processes. Our findings present, for the first time, compelling evidence of a significant role of Sox8 in the context of a disease model.


Asunto(s)
Enfermedades Desmielinizantes , Esclerosis Múltiple , Remielinización , Ratones , Animales , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/patología , Diferenciación Celular , Estudio de Asociación del Genoma Completo , Oligodendroglía , Vaina de Mielina/patología , Esclerosis Múltiple/inducido químicamente , Esclerosis Múltiple/genética , Esclerosis Múltiple/patología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Factores de Transcripción SOXE/genética
3.
Nucleic Acids Res ; 50(20): 11509-11528, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36318265

RESUMEN

Differentiated oligodendrocytes produce myelin and thereby ensure rapid nerve impulse conduction and efficient information processing in the vertebrate central nervous system. The Krüppel-like transcription factor KLF9 enhances oligodendrocyte differentiation in culture, but appears dispensable in vivo. Its mode of action and role within the oligodendroglial gene regulatory network are unclear. Here we show that KLF9 shares its expression in differentiating oligodendrocytes with the closely related KLF13 protein. Both KLF9 and KLF13 bind to regulatory regions of genes that are important for oligodendrocyte differentiation and equally recognized by the central differentiation promoting transcription factors SOX10 and MYRF. KLF9 and KLF13 physically interact and synergistically activate oligodendrocyte-specific regulatory regions with SOX10 and MYRF. Similar to KLF9, KLF13 promotes differentiation and myelination in primary oligodendroglial cultures. Oligodendrocyte differentiation is also altered in KLF13-deficient mice as demonstrated by a transiently reduced myelin gene expression during the first postnatal week. Considering mouse phenotypes, the similarities in expression pattern and genomic binding and the behaviour in functional assays, KLF9 and KLF13 are important and largely redundant components of the gene regulatory network in charge of oligodendrocyte differentiation and myelination.


Asunto(s)
Factores de Transcripción de Tipo Kruppel , Vaina de Mielina , Oligodendroglía , Factores de Transcripción SOXE , Animales , Ratones , Diferenciación Celular/genética , Expresión Génica , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo
4.
Bioeng Transl Med ; 7(1): e10257, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35079632

RESUMEN

After peripheral nerve injury, mature Schwann cells (SCs) de-differentiate and undergo cell reprogramming to convert into a specialized cell repair phenotype that promotes nerve regeneration. Reprogramming of SCs into the repair phenotype is tightly controlled at the genome level and includes downregulation of pro-myelinating genes and activation of nerve repair-associated genes. Nerve injuries induce not only biochemical but also mechanical changes in the tissue architecture which impact SCs. Recently, we showed that SCs mechanically sense the stiffness of the extracellular matrix and that SC mechanosensitivity modulates their morphology and migratory behavior. Here, we explore the expression levels of key transcription factors and myelin-associated genes in SCs, and the outgrowth of primary dorsal root ganglion (DRG) neurites, in response to changes in the stiffness of generated matrices. The selected stiffness range matches the physiological conditions of both utilized cell types as determined in our previous investigations. We find that stiffer matrices induce upregulation of the expression of transcription factors Sox2, Oct6, and Krox20, and concomitantly reduce the expression of the repair-associated transcription factor c-Jun, suggesting a link between SC substrate mechanosensing and gene expression regulation. Likewise, DRG neurite outgrowth correlates with substrate stiffness. The remarkable intrinsic physiological plasticity of SCs, and the mechanosensitivity of SCs and neurites, may be exploited in the design of bioengineered scaffolds that promote nerve regeneration upon injury.

5.
Dev Neurobiol ; 81(7): 892-901, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34480425

RESUMEN

The transcription factors Olig2 and Sox10 jointly define oligodendroglial identity. Because of their continuous presence during development and in the differentiated state they shape the oligodendroglial regulatory network at all times. In this review, we exploit their eminent role and omnipresence to elaborate the central principles that organize the gene regulatory network in oligodendrocytes in such a way that it preserves its identity, but at the same time allows defined and stimulus-dependent changes that result in an ordered lineage progression, differentiation, and myelination. For this purpose, we outline the multiple functional and physical interactions and intricate cross-regulatory relationships with other transcription factors, such as Hes5, Id, and SoxD proteins, in oligodendrocyte precursors and Tcf7l2, Sip1, Nkx2.2, Zfp24, and Myrf during differentiation and myelination, and interpret them in the context of the regulatory network.


Asunto(s)
Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Oligodendroglía , Factores de Transcripción SOXE , Diferenciación Celular , Regulación de la Expresión Génica , Neurogénesis , Oligodendroglía/metabolismo , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Sci Rep ; 11(1): 14044, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34234180

RESUMEN

The three SoxD proteins, Sox5, Sox6 and Sox13, represent closely related transcription factors with important roles during development. In the developing nervous system, SoxD proteins have so far been primarily studied in oligodendroglial cells and in interneurons of brain and spinal cord. In oligodendroglial cells, Sox5 and Sox6 jointly maintain the precursor state, interfere with terminal differentiation, and thereby ensure the proper timing of myelination in the central nervous system. Here we studied the role of SoxD proteins in Schwann cells, the functional counterpart of oligodendrocytes in the peripheral nervous system. We show that Schwann cells express Sox5 and Sox13 but not Sox6. Expression was transient and ceased with the onset of terminal differentiation. In mice with early Schwann cell-specific deletion of both Sox5 and Sox13, embryonic Schwann cell development was not substantially affected and progressed normally into the promyelinating stage. However, there was a mild and transient delay in the myelination of the peripheral nervous system of these mice. We therefore conclude that SoxD proteins-in stark contrast to their action in oligodendrocytes-promote differentiation and myelination in Schwann cells.


Asunto(s)
Vaina de Mielina/metabolismo , Neurogénesis/genética , Sistema Nervioso Periférico/crecimiento & desarrollo , Sistema Nervioso Periférico/metabolismo , Factores de Transcripción SOXD/deficiencia , Células de Schwann/metabolismo , Animales , Autoantígenos/genética , Biomarcadores , Eliminación de Gen , Expresión Génica , Inmunohistoquímica , Ratones , Familia de Multigenes , Vaina de Mielina/ultraestructura , Especificidad de Órganos , Factores de Transcripción SOXD/genética , Células de Schwann/ultraestructura
7.
Development ; 148(14)2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34184026

RESUMEN

Transcription factor 4 (TCF4) is a crucial regulator of neurodevelopment and has been linked to the pathogenesis of autism, intellectual disability and schizophrenia. As a class I bHLH transcription factor (TF), it is assumed that TCF4 exerts its neurodevelopmental functions through dimerization with proneural class II bHLH TFs. Here, we aim to identify TF partners of TCF4 in the control of interhemispheric connectivity formation. Using a new bioinformatic strategy integrating TF expression levels and regulon activities from single cell RNA-sequencing data, we find evidence that TCF4 interacts with non-bHLH TFs and modulates their transcriptional activity in Satb2+ intercortical projection neurons. Notably, this network comprises regulators linked to the pathogenesis of neurodevelopmental disorders, e.g. FOXG1, SOX11 and BRG1. In support of the functional interaction of TCF4 with non-bHLH TFs, we find that TCF4 and SOX11 biochemically interact and cooperatively control commissure formation in vivo, and regulate the transcription of genes implicated in this process. In addition to identifying new candidate interactors of TCF4 in neurodevelopment, this study illustrates how scRNA-Seq data can be leveraged to predict TF networks in neurodevelopmental processes.


Asunto(s)
ARN Citoplasmático Pequeño/metabolismo , Análisis de la Célula Individual , Factor de Transcripción 4/genética , Factor de Transcripción 4/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , ADN Helicasas , Embrión de Mamíferos , Factores de Transcripción Forkhead , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Discapacidad Intelectual , Proteínas de Unión a la Región de Fijación a la Matriz , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso , Neuronas/fisiología , Proteínas Nucleares , Dominios y Motivos de Interacción de Proteínas , ARN Citoplasmático Pequeño/genética , Factores de Transcripción SOXC , Esquizofrenia/genética , Esquizofrenia/metabolismo
8.
Nucleic Acids Res ; 48(16): 8959-8976, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32672815

RESUMEN

Schwann cells are the nerve ensheathing cells of the peripheral nervous system. Absence, loss and malfunction of Schwann cells or their myelin sheaths lead to peripheral neuropathies such as Charcot-Marie-Tooth disease in humans. During Schwann cell development and myelination chromatin is dramatically modified. However, impact and functional relevance of these modifications are poorly understood. Here, we analyzed histone H2B monoubiquitination as one such chromatin modification by conditionally deleting the Rnf40 subunit of the responsible E3 ligase in mice. Rnf40-deficient Schwann cells were arrested immediately before myelination or generated abnormally thin, unstable myelin, resulting in a peripheral neuropathy characterized by hypomyelination and progressive axonal degeneration. By combining sequencing techniques with functional studies we show that H2B monoubiquitination does not influence global gene expression patterns, but instead ensures selective high expression of myelin and lipid biosynthesis genes and proper repression of immaturity genes. This requires the specific recruitment of the Rnf40-containing E3 ligase by Egr2, the central transcriptional regulator of peripheral myelination, to its target genes. Our study identifies histone ubiquitination as essential for Schwann cell myelination and unravels new disease-relevant links between chromatin modifications and transcription factors in the underlying regulatory network.


Asunto(s)
Proteína 2 de la Respuesta de Crecimiento Precoz/fisiología , Neuropatía Hereditaria Motora y Sensorial/metabolismo , Histonas/metabolismo , Sistema Nervioso Periférico/metabolismo , Células de Schwann/metabolismo , Animales , Línea Celular Tumoral , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Sistema Nervioso Periférico/patología , Ratas , Células de Schwann/patología , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
9.
EMBO J ; 39(13): e104159, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32627520

RESUMEN

γδ T cells with distinct properties develop in the embryonic and adult thymus and have been identified as critical players in a broad range of infections, antitumor surveillance, autoimmune diseases, and tissue homeostasis. Despite their potential value for immunotherapy, differentiation of γδ T cells in the thymus is incompletely understood. Here, we establish a high-resolution map of γδ T-cell differentiation from the fetal and adult thymus using single-cell RNA sequencing. We reveal novel sub-types of immature and mature γδ T cells and identify an unpolarized thymic population which is expanded in the blood and lymph nodes. Our detailed comparative analysis reveals remarkable similarities between the gene networks active during fetal and adult γδ T-cell differentiation. By performing a combined single-cell analysis of Sox13, Maf, and Rorc knockout mice, we demonstrate sequential activation of these factors during IL-17-producing γδ T-cell (γδT17) differentiation. These findings substantially expand our understanding of γδ T-cell ontogeny in fetal and adult life. Our experimental and computational strategy provides a blueprint for comparing immune cell differentiation across developmental stages.


Asunto(s)
Diferenciación Celular/inmunología , Feto/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Linfocitos T/inmunología , Animales , Autoantígenos/genética , Autoantígenos/inmunología , Diferenciación Celular/genética , Ratones , Ratones Noqueados , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/inmunología , Proteínas Proto-Oncogénicas c-maf/genética , Proteínas Proto-Oncogénicas c-maf/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Linfocitos T/citología
10.
Nucleic Acids Res ; 48(3): 1254-1270, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31828317

RESUMEN

Oligodendrocytes generate myelin in the vertebrate central nervous system and thus ensure rapid propagation of neuronal activity. Their development is controlled by a network of transcription factors that function as determinants of cell identity or as temporally restricted stage-specific regulators. The continuously expressed Sox10 and Myrf, a factor induced during late development, are particularly important for terminal differentiation. How these factors function together mechanistically and influence each other, is not well understood. Here we show that Myrf not only cooperates with Sox10 during the induction of genes required for differentiation and myelin formation. Myrf also inhibits the activity of Sox10 on genes that are essential during earlier phases of oligodendroglial development. By characterization of the exact DNA-binding requirements of Myrf, we furthermore show that cooperative activation is a consequence of joint binding of Sox10 and Myrf to the same regulatory regions. In contrast, inhibition of Sox10-dependent gene activation occurs on genes that lack Myrf binding sites and likely involves physical interaction between Myrf and Sox10 followed by sequestration. These two opposite activities allow Myrf to redirect Sox10 from genes that it activates in oligodendrocyte precursor cells to genes that need to be induced during terminal differentiation.


Asunto(s)
Diferenciación Celular/genética , Proteínas de la Membrana/genética , Oligodendroglía/metabolismo , Factores de Transcripción SOXE/genética , Factores de Transcripción/genética , Animales , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/metabolismo , Desarrollo Embrionario/genética , Células HEK293 , Humanos , Ratones , Vaina de Mielina/genética , Neurogénesis/genética , Ratas
11.
Nat Commun ; 10(1): 4042, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31492871

RESUMEN

Tissue injury induces changes in cellular identity, but the underlying molecular mechanisms remain obscure. Here, we show that upon damage in a mouse model, epidermal cells at the wound edge convert to an embryonic-like state, altering particularly the cytoskeletal/extracellular matrix (ECM) components and differentiation program. We show that SOX11 and its closest relative SOX4 dictate embryonic epidermal state, regulating genes involved in epidermal development as well as cytoskeletal/ECM organization. Correspondingly, postnatal induction of SOX11 represses epidermal terminal differentiation while deficiency of Sox11 and Sox4 accelerates differentiation and dramatically impairs cell motility and re-epithelialization. Amongst the embryonic genes reactivated at the wound edge, we identify fascin actin-bundling protein 1 (FSCN1) as a critical direct target of SOX11 and SOX4 regulating cell migration. Our study identifies the reactivated embryonic gene program during wound repair and demonstrates that SOX11 and SOX4 play a central role in this process.


Asunto(s)
Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción SOXC/genética , Cicatrización de Heridas/genética , Heridas y Lesiones/genética , Animales , Diferenciación Celular/genética , Movimiento Celular/genética , Citoesqueleto/metabolismo , Células Epidérmicas/citología , Células Epidérmicas/metabolismo , Epidermis/embriología , Epidermis/metabolismo , Matriz Extracelular , Ratones , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Factores de Transcripción SOXC/metabolismo , Heridas y Lesiones/embriología
12.
Glia ; 67(11): 2153-2165, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31038810

RESUMEN

Myelination is an evolutionary recent differentiation program that has been independently acquired in vertebrates by Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system. Therefore, it is not surprising that regulating transcription factors differ substantially between both cell types. However, overall principles are similar as transcriptional control in Schwann cells and oligodendrocytes combines lineage determining and stage-specific factors in complex regulatory networks. Myelination does not only occur during development, but also as remyelination in the adult. In line with the different conditions during developmental myelination and remyelination and the distinctive properties of Schwann cells and oligodendrocytes, transcriptional regulation of remyelination exhibits unique features and differs between the two cell types. This review gives an overview of the current state in the field.


Asunto(s)
Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Remielinización/fisiología , Células de Schwann/metabolismo , Animales , Diferenciación Celular/fisiología , Enfermedades Desmielinizantes/metabolismo , Humanos
13.
Nat Commun ; 10(1): 2361, 2019 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-31142747

RESUMEN

Schwann cells ensure efficient nerve impulse conduction in the peripheral nervous system. Their development is accompanied by defined chromatin changes, including variant histone deposition and redistribution. To study the importance of variant histones for Schwann cell development, we altered their genomic distribution by conditionally deleting Ep400, the central subunit of the Tip60/Ep400 complex. Ep400 absence causes peripheral neuropathy in mice, characterized by terminal differentiation defects in myelinating and non-myelinating Schwann cells and immune cell activation. Variant histone H2A.Z is differently distributed throughout the genome and remains at promoters of Tfap2a, Pax3 and other transcriptional regulator genes with transient function at earlier developmental stages. Tfap2a deletion in Ep400-deficient Schwann cells causes a partial rescue arguing that continued expression of early regulators mediates the phenotypic defects. Our results show that proper genomic distribution of variant histones is essential for Schwann cell differentiation, and assign importance to Ep400-containing chromatin remodelers in the process.


Asunto(s)
Histonas/metabolismo , Enfermedades del Sistema Nervioso Periférico/genética , Células de Schwann/metabolismo , Nervio Ciático/metabolismo , Factores de Transcripción/genética , Animales , Ensamble y Desensamble de Cromatina , ADN Helicasas , Proteínas de Unión al ADN , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Transgénicos , Factor de Transcripción PAX3/genética , Factor de Transcripción PAX3/metabolismo , Enfermedades del Sistema Nervioso Periférico/metabolismo , Enfermedades del Sistema Nervioso Periférico/patología , Regiones Promotoras Genéticas , Nervio Ciático/patología , Factor de Transcripción AP-2/genética , Factor de Transcripción AP-2/metabolismo
14.
Sci Rep ; 8(1): 16196, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30385877

RESUMEN

The intellectual disability gene, Sox11, encodes for a critical neurodevelopmental transcription factor with functions in precursor survival, neuronal fate determination, migration and morphogenesis. The mechanisms regulating SOX11's activity remain largely unknown. Mass spectrometric analysis uncovered that SOX11 can be post-translationally modified by phosphorylation. Here, we report that phosphorylatable serines surrounding the high-mobility group box modulate SOX11's transcriptional activity. Through Mass Spectrometry (MS), co-immunoprecipitation assays and in vitro phosphorylation assays followed by MS we verified that protein kinase A (PKA) interacts with SOX11 and phosphorylates it on S133. In vivo replacement of SoxC factors in developing adult-generated hippocampal neurons with SOX11 S133 phospho-mutants indicated that phosphorylation on S133 modulates dendrite development of adult-born dentate granule neurons, while reporter assays suggested that S133 phosphorylation fine-tunes the activation of select target genes. These data provide novel insight into the control of the critical neurodevelopmental regulator SOX11 and imply SOX11 as a mediator of PKA-regulated neuronal development.


Asunto(s)
Morfogénesis/genética , Neurogénesis/genética , Neuronas/metabolismo , Factores de Transcripción SOXC/genética , Animales , Núcleos Cerebelosos/crecimiento & desarrollo , Núcleos Cerebelosos/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Dendritas/genética , Dendritas/metabolismo , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Espectrometría de Masas , Ratones , Fosforilación/genética , Serina/genética
15.
Am J Pathol ; 188(11): 2529-2541, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30201496

RESUMEN

Mechanisms of glomerular crescent formation and podocyte repair processes are still unclear. Therefore, we investigated the expression of the transcription factor Sox9 as a potential marker of a subpopulation of parietal epithelial cells (PECs) with potential regenerative properties. Glomerular Sox9 expression was characterized in detail in a rat anti-glomerular basement membrane (GBM) nephritis model using immunofluorescence and confocal laser scanning microscopy. In healthy kidneys Sox9 is expressed in a subpopulation of PECs restricted to approximately 20% to 50% of PEC nuclei and was highly conserved in all investigated species. During rat anti-GBM nephritis the number of glomerular Sox9+ cells increased and was associated with proliferation activity. In nephritic glomeruli Sox9 expression was not restricted to Bowman's capsule lining but was also found on cells of the glomerular tuft. Nearly all Sox9+ cells also expressed the PEC marker Pax8, whereas endothelial cells, mesangial cells, macrophages, and T lymphocytes lacked Sox9 expression. At the margins of crescents Sox9+/Pax8+ cells additionally expressed podocyte markers. In contrast, in sclerotic lesions a minority of Sox9+/Pax8+ cells expressed the myofibroblast marker α-smooth muscle actin. In glomerular Sox9+ cells Jagged 1 was up-regulated. During anti-GBM nephritis Sox9+ PECs proliferate and migrate onto the glomerular tuft. Future studies are needed to confirm the origin of Sox9+ cells from PECs and differentiation in both podocytes and/or myofibroblasts.


Asunto(s)
Enfermedad por Anticuerpos Antimembrana Basal Glomerular/patología , Células Epiteliales/patología , Membrana Basal Glomerular/patología , Nefritis/patología , Podocitos/patología , Factor de Transcripción SOX9/metabolismo , Animales , Enfermedad por Anticuerpos Antimembrana Basal Glomerular/metabolismo , Diferenciación Celular , Células Cultivadas , Células Epiteliales/metabolismo , Membrana Basal Glomerular/metabolismo , Proteína Jagged-1 , Masculino , Nefritis/metabolismo , Podocitos/metabolismo , Ratas , Ratas Endogámicas WKY
16.
Front Mol Neurosci ; 11: 211, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29973868

RESUMEN

SOX11 is a key Transcription Factor (TF) in the regulation of embryonic and adult neurogenesis, whose mutation has recently been linked to an intellectual disability syndrome in humans. SOX11's transient activity during neurogenesis is critical to ensure the precise execution of the neurogenic program. Here, we report that SOX11 displays differential subcellular localizations during the course of neurogenesis. Western-Blot analysis of embryonic mouse brain lysates indicated that SOX11 is post-translationally modified by phosphorylation. Using Mass Spectrometry, we found 10 serine residues in the SOX11 protein that are putatively phosphorylated. Systematic analysis of phospho-mutant SOX11 resulted in the identification of the S30 residue, whose phosphorylation promotes nuclear over cytoplasmic localization of SOX11. Collectively, these findings uncover phosphorylation as a novel layer of regulation of the intellectual disability gene Sox11.

17.
Sci Rep ; 8(1): 10268, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29980721

RESUMEN

Understanding transcription factor (TF) regulation of limbal epithelial stem/progenitor cells (LEPCs) may aid in using non-ocular cells to regenerate the corneal surface. This study aimed to identify and characterize TF genes expressed specifically in LEPCs isolated from human donor eyes by laser capture microdissection. Using a profiling approach, preferential limbal expression was found for SoxE and SoxF genes, particularly for Sox9, which showed predominantly cytoplasmic localization in basal LEPCs and nuclear localization in suprabasal and corneal epithelial cells, indicating nucleocytoplasmic translocation and activation during LEPC proliferation and differentiation. Increased nuclear localization of Sox9 was also observed in activated LEPCs following clonal expansion and corneal epithelial wound healing. Knockdown of SOX9 expression in cultured LEPCs by RNAi led to reduced expression of progenitor cell markers, e.g. keratin 15, and increased expression of differentiation markers, e.g. keratin 3. Furthermore, SOX9 silencing significantly suppressed the proliferative capacity of LEPCs and reduced levels of glycogen synthase kinase 3 beta (GSK-3ß), a negative regulator of Wnt/ß-catenin signaling. Sox9 expression, in turn, was significantly suppressed by treatment of LEPCs with exogenous GSK-3ß inhibitors and enhanced by small molecule inhibitors of Wnt signaling. Our results suggest that Sox9 and Wnt/ß-catenin signaling cooperate in mutually repressive interactions to achieve a balance between quiescence, proliferation and differentiation of LEPCs in the limbal niche. Future molecular dissection of Sox9-Wnt interaction and mechanisms of nucleocytoplasmic shuttling of Sox9 may aid in improving the regenerative potential of LEPCs and the reprogramming of non-ocular cells for corneal surface regeneration.


Asunto(s)
Proliferación Celular , Células Epiteliales/citología , Limbo de la Córnea/citología , Factor de Transcripción SOX9/metabolismo , Nicho de Células Madre/fisiología , Células Madre/citología , Factores de Transcripción/metabolismo , Diferenciación Celular , Células Cultivadas , Células Epiteliales/metabolismo , Humanos , Captura por Microdisección con Láser , Limbo de la Córnea/metabolismo , Factor de Transcripción SOX9/genética , Células Madre/metabolismo , Factores de Transcripción/genética
18.
Dev Biol ; 444 Suppl 1: S308-S324, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29807017

RESUMEN

Carotid body glomus cells mediate essential reflex responses to arterial blood hypoxia. They are dopaminergic and secrete growth factors that support dopaminergic neurons, making the carotid body a potential source of patient-specific cells for Parkinson's disease therapy. Like adrenal chromaffin cells, which are also hypoxia-sensitive, glomus cells are neural crest-derived and require the transcription factors Ascl1 and Phox2b; otherwise, their development is little understood at the molecular level. Here, analysis in chicken and mouse reveals further striking molecular parallels, though also some differences, between glomus and adrenal chromaffin cell development. Moreover, histology has long suggested that glomus cell precursors are 'émigrés' from neighbouring ganglia/nerves, while multipotent nerve-associated glial cells are now known to make a significant contribution to the adrenal chromaffin cell population in the mouse. We present conditional genetic lineage-tracing data from mice supporting the hypothesis that progenitors expressing the glial marker proteolipid protein 1, presumably located in adjacent ganglia/nerves, also contribute to glomus cells. Finally, we resolve a paradox for the 'émigré' hypothesis in the chicken - where the nearest ganglion to the carotid body is the nodose, in which the satellite glia are neural crest-derived, but the neurons are almost entirely placode-derived - by fate-mapping putative nodose neuronal 'émigrés' to the neural crest.


Asunto(s)
Cuerpo Carotídeo/embriología , Células Cromafines/metabolismo , Pericitos/metabolismo , Glándulas Suprarrenales/metabolismo , Glándulas Suprarrenales/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Tipificación del Cuerpo/fisiología , Diferenciación Celular , Hipoxia de la Célula/fisiología , Embrión de Pollo , Pollos/metabolismo , Ratones , Ratones Noqueados , Proteína Proteolipídica de la Mielina/fisiología , Cresta Neural/metabolismo , Neuronas/metabolismo , Pericitos/fisiología , Factores de Transcripción/metabolismo
19.
J Neurochem ; 146(3): 251-268, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29749639

RESUMEN

The high-mobility-group domain containing SoxC transcription factors Sox4 and Sox11 are expressed and required in the vertebrate central nervous system in neuronal precursors and neuroblasts. To identify genes that are widely regulated by SoxC proteins during vertebrate neurogenesis we generated expression profiles from developing mouse brain and chicken neural tube with reduced SoxC expression and found the transcription factor prospero homeobox protein 1 (Prox1) strongly down-regulated under both conditions. This led us to hypothesize that Prox1 expression depends on SoxC proteins in the developing central nervous system of mouse and chicken. By combining luciferase reporter assays and over-expression in the chicken neural tube with in vivo and in vitro binding studies, we identify the Prox1 gene promoter and two upstream enhancers at -44 kb and -40 kb relative to the transcription start as regulatory regions that are bound and activated by SoxC proteins. This argues that Prox1 is a direct target gene of SoxC proteins during neurogenesis. Electroporations in the chicken neural tube furthermore show that Prox1 activates a subset of SoxC target genes, whereas it has no effects on others. We propose that the transcriptional control of Prox1 by SoxC proteins may ensure coupling of two types of transcription factors that are both required during early neurogenesis, but have at least in part distinct functions. Open Data: Materials are available on https://cos.io/our-services/open-science-badges/ https://osf.io/93n6m/.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/metabolismo , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Prosencéfalo/citología , Factores de Transcripción SOXC/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Embrión de Pollo , Inmunoprecipitación de Cromatina , Biología Computacional , Ensayo de Cambio de Movilidad Electroforética , Electroporación , Embrión de Mamíferos , Ontología de Genes , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Tubo Neural/citología , Tubo Neural/metabolismo , Factores del Dominio POU/genética , Factores del Dominio POU/metabolismo , Prosencéfalo/embriología , Prosencéfalo/crecimiento & desarrollo , Prosencéfalo/metabolismo , Factores de Transcripción SOXC/genética , Tubulina (Proteína)/metabolismo , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA