Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Evol Appl ; 17(5): e13704, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38770102

RESUMEN

Knowledge of functional dispersal barriers in the marine environment can be used to inform a wide variety of management actions, such as marine spatial planning, restoration efforts, fisheries regulations, and invasive species management. Locations and causes of dispersal barriers can be studied through various methods, including movement tracking, biophysical modeling, demographic models, and genetics. Combining methods illustrating potential dispersal, such as biophysical modeling, with realized dispersal through, e.g., genetic connectivity estimates, provides particularly useful information for teasing apart potential causes of observed barriers. In this study, we focus on blue mussels (Mytilus edulis) in the Skagerrak-a marginal sea connected to the North Sea in Northern Europe-and combine biophysical models of larval dispersal with genomic data to infer locations and causes of dispersal barriers in the area. Results from both methods agree; patterns of ocean currents are a major structuring factor in the area. We find a complex pattern of source-sink dynamics with several dispersal barriers and show that some areas can be isolated despite an overall high dispersal capability. Finally, we translate our finding into management advice that can be used to sustainably manage this ecologically and economically important species in the future.

2.
Mol Ecol ; 31(9): 2562-2577, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35229385

RESUMEN

Gene flow shapes spatial genetic structure and the potential for local adaptation. Among marine animals with nonmigratory adults, the presence or absence of a pelagic larval stage is thought to be a key determinant in shaping gene flow and the genetic structure of populations. In addition, the spatial distribution of suitable habitats is expected to influence the distribution of biological populations and their connectivity patterns. We used whole genome sequencing to study demographic history and reduced representation (double-digest restriction associated DNA) sequencing data to analyse spatial genetic structure in broadnosed pipefish (Syngnathus typhle). Its main habitat is eelgrass beds, which are patchily distributed along the study area in southern Norway. Demographic connectivity among populations was inferred from long-term (~30-year) population counts that uncovered a rapid decline in spatial correlations in abundance with distance as short as ~2 km. These findings were contrasted with data for two other fish species that have a pelagic larval stage (corkwing wrasse, Symphodus melops; black goby, Gobius niger). For these latter species, we found wider spatial scales of connectivity and weaker genetic isolation-by-distance patterns, except where both species experienced a strong barrier to gene flow, seemingly due to lack of suitable habitat. Our findings verify expectations that a fragmented habitat and absence of a pelagic larval stage promote genetic structure, while presence of a pelagic larvae stage increases demographic connectivity and gene flow, except perhaps over extensive habitat gaps.


Asunto(s)
Metagenómica , Perciformes , Animales , Demografía , Ecosistema , Peces/genética , Larva/genética , Perciformes/genética
3.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35165196

RESUMEN

Life on Earth has been characterized by recurring cycles of ecological stasis and disruption, relating biological eras to geological and climatic transitions through the history of our planet. Due to the increasing degree of ecological abruption caused by human influences many advocate that we now have entered the geological era of the Anthropocene, or "the age of man." Considering the ongoing mass extinction and ecosystem reshuffling observed worldwide, a better understanding of the drivers of ecological stasis will be a requisite for identifying routes of intervention and mitigation. Ecosystem stability may rely on one or a few keystone species, and the loss of such species could potentially have detrimental effects. The Atlantic cod (Gadus morhua) has historically been highly abundant and is considered a keystone species in ecosystems of the northern Atlantic Ocean. Collapses of cod stocks have been observed on both sides of the Atlantic and reported to have detrimental effects that include vast ecosystem reshuffling. By whole-genome resequencing we demonstrate that stabilizing selection maintains three extensive "supergenes" in Atlantic cod, linking these genes to species persistence and ecological stasis. Genomic inference of historic effective population sizes shows continued declines for cod in the North Sea-Skagerrak-Kattegat system through the past millennia, consistent with an early onset of the marine Anthropocene through industrialization and commercialization of fisheries throughout the medieval period.


Asunto(s)
Acuicultura/métodos , Conservación de los Recursos Naturales/métodos , Gadus morhua/genética , Animales , Océano Atlántico , Ecosistema , Explotaciones Pesqueras , Gadus morhua/crecimiento & desarrollo , Genoma , Genómica , Humanos , Mar del Norte , Dinámica Poblacional
4.
Evol Appl ; 13(2): 400-416, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31993085

RESUMEN

The salmonid fish Brown trout is iconic as a model for the application of conservation genetics to understand and manage local interspecific variation. However, there is still scant information about relationships between local and large-scale population structure, and to what extent geographical and environmental variables are associated with barriers to gene flow. We used information from 3,782 mapped SNPs developed for the present study and conducted outlier tests and gene-environment association (GEA) analyses in order to examine drivers of population structure. Analyses comprised >2,600 fish from 72 riverine populations spanning a central part of the species' distribution in northern Europe. We report hitherto unidentified genetic breaks in population structure, indicating strong barriers to gene flow. GEA loci were widely spread across genomic regions and showed correlations with climatic, abiotic and geographical parameters. In some cases, individual loci showed consistent GEA across the geographical regions Britain, Europe and Scandinavia. In other cases, correlations were observed only within a sub-set of regions, suggesting that locus-specific variation was associated with local processes. A paired-population sampling design allowed us to evaluate sampling effects on detection of outlier loci and GEA. Two widely applied methods for outlier detection (pcadapt and bayescan) showed low overlap in loci identified as statistical outliers across sub-sets of data. Two GEA analytical approaches (LFMM and RDA) showed good correspondence concerning loci associated with specific variables, but LFMM identified five times more statistically significant associations than RDA. Our results emphasize the importance of carefully considering the statistical methods applied for the hypotheses being tested in outlier analysis. Sampling design may have lower impact on results if the objective is to identify GEA loci and their population distribution. Our study provides new insights into trout populations, and results have direct management implications in serving as a tool for identification of conservation units.

5.
Mol Ecol ; 29(1): 160-171, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31733084

RESUMEN

Understanding the biological processes involved in genetic differentiation and divergence between populations within species is a pivotal aim in evolutionary biology. One particular phenomenon that requires clarification is the maintenance of genetic barriers despite the high potential for gene flow in the marine environment. Such patterns have been attributed to limited dispersal or local adaptation, and to a lesser extent to the demographic history of the species. The corkwing wrasse (Symphodus melops) is an example of a marine fish species where regions of particular strong divergence are observed. One such genetic break occurred at a surprisingly small spatial scale (FST ~0.1), over a short coastline (<60 km) in the North Sea-Skagerrak transition area in southwestern Norway. Here, we investigate the observed divergence and purported reproductive isolation using genome resequencing. Our results suggest that historical events during the post-glacial recolonization route can explain the present population structure of the corkwing wrasse in the northeast Atlantic. While the divergence across the break is strong, we detected ongoing gene flow between populations over the break suggesting recent contact or negative selection against hybrids. Moreover, we found few outlier loci and no clear genomic regions potentially being under selection. We concluded that neutral processes and random genetic drift e.g., due to founder events during colonization have shaped the population structure in this species in Northern Europe. Our findings underline the need to take into account the demographic process in studies of divergence processes.


Asunto(s)
Peces/genética , Flujo Génico , Flujo Genético , Genoma/genética , Aislamiento Reproductivo , Animales , Demografía , Ecología , Europa (Continente) , Femenino , Peces/fisiología , Masculino
6.
Sci Rep ; 9(1): 20061, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882713

RESUMEN

Red coloration of muscle tissue (flesh) is a unique trait in several salmonid genera, including Atlantic salmon. The color results from dietary carotenoids deposited in the flesh, whereas the color intensity is affected both by diet and genetic components. Herein we report on a genome-wide association study (GWAS) to identify genetic variation underlying this trait. Two SNPs on ssa26 showed strong associations to the flesh color in salmon. Two genes known to be involved in carotenoid metabolism were located in this QTL- region: beta-carotene oxygenase 1 (bco1) and beta-carotene oxygenase 1 like (bco1l). To determine whether flesh color variation is caused by one, or both, of these genes, functional studies were carried out including mRNA and protein expression in fish with red and pale flesh color. The catalytic abilities of these two genes were also tested with different carotenoids. Our results suggest bco1l to be the most likely gene to explain the flesh color variation observed in this population.


Asunto(s)
Genómica , Pigmentación/genética , beta-Caroteno 15,15'-Monooxigenasa/genética , Animales , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Salmo salar , beta Caroteno/metabolismo
7.
Evol Appl ; 11(9): 1527-1539, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30344625

RESUMEN

Coexistence in the same habitat of closely related yet genetically different populations is a phenomenon that challenges our understanding of local population structure and adaptation. Identifying the underlying mechanisms for such coexistence can yield new insight into adaptive evolution, diversification and the potential for organisms to adapt and persist in response to a changing environment. Recent studies have documented cryptic, sympatric populations of Atlantic cod (Gadus morhua) in coastal areas. We analysed genetic origin of 6,483 individual cod sampled annually over 14 years from 125 locations along the Norwegian Skagerrak coast and document stable coexistence of two genetically divergent Atlantic cod ecotypes throughout the study area and study period. A "fjord" ecotype dominated in numbers deep inside fjords while a "North Sea" ecotype was the only type found in offshore North Sea. Both ecotypes coexisted in similar proportions throughout coastal habitats at all spatial scales. The size-at-age of the North Sea ecotype on average exceeded that of the fjord ecotype by 20% in length and 80% in weight across all habitats. Different growth and size among individuals of the two types might be one of several ecologically significant variables that allow for stable coexistence of closely related populations within the same habitat. Management plans, biodiversity initiatives and other mitigation strategies that do not account for the mixture of species ecotypes are unlikely to meet objectives related to the sustainability of fish and fisheries.

8.
Ecol Evol ; 8(24): 12547-12558, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30619564

RESUMEN

The use of genetic markers under putative selection in population studies carries the potential for erroneous identification of populations and misassignment of individuals to population of origin. Selected markers are nevertheless attractive, especially in marine organisms that are characterized by weak population structure at neutral loci. Highly fecund species may tolerate the cost of strong selective mortality during early life stages, potentially leading to a shift in offspring genotypes away from the parental proportions. In Atlantic cod, recent genetic studies have uncovered different genotype clusters apparently representing phenotypically cryptic populations that coexist in coastal waters. Here, we tested if a high-graded SNP panel specifically designed to classify individual cod to population of origin may be unreliable because of natural selection acting on the SNPs or their linked background. Temporal samples of cod were collected from two fjords, starting at the earliest life stage (pelagic eggs) and carried on until late autumn (bottom-settled juveniles), covering the period during summer of high natural mortality. Despite the potential for selective mortality during the study period, we found no evidence for selection, as both cod types occurred throughout the season, already in the earliest egg samples, and there was no evidence for a shift during the season in the proportions of one or the other type. We conclude that high-graded marker panels under putative natural selection represent a valid and useful tool for identifying biological population structure in this highly fecund species and presumably in others.

9.
Genet Sel Evol ; 49(1): 20, 2017 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-28193175

RESUMEN

BACKGROUND: Bovine milk is widely regarded as a nutritious food source for humans, although the effects of individual fatty acids on human health is a subject of debate. Based on the assumption that genomic selection offers potential to improve milk fat composition, there is strong interest to understand more about the genetic factors that influence the biosynthesis of bovine milk and the molecular mechanisms that regulate milk fat synthesis and secretion. For this reason, the work reported here aimed at identifying genetic variants that affect milk fatty acid composition in Norwegian Red cattle. Milk fatty acid composition was predicted from the nation-wide recording scheme using Fourier transform infrared spectroscopy data and applied to estimate heritabilities for 36 individual and combined fatty acid traits. The recordings were used to generate daughter yield deviations that were first applied in a genome-wide association (GWAS) study with 17,343 markers to identify quantitative trait loci (QTL) affecting fatty acid composition, and next on high-density and sequence-level datasets to fine-map the most significant QTL on BTA13 (BTA for Bos taurus chromosome). RESULTS: The initial GWAS revealed 200 significant associations, with the strongest signals on BTA1, 13 and 15. The BTA13 QTL highlighted a strong functional candidate gene for de novo synthesis of short- and medium-chained saturated fatty acids; acyl-CoA synthetase short-chain family member 2. However, subsequent fine-mapping using single nucleotide polymorphisms (SNPs) from a high-density chip and variants detected by resequencing showed that the effect was more likely caused by a second nearby gene; nuclear receptor coactivator 6 (NCOA6). These findings were confirmed with results from haplotype studies. NCOA6 is a nuclear receptor that interacts with transcription factors such as PPARγ, which is a major regulator of bovine milk fat synthesis. CONCLUSIONS: An initial GWAS revealed a highly significant QTL for de novo-synthesized fatty acids on BTA13 and was followed by fine-mapping of the QTL within NCOA6. The most significant SNPs were either synonymous or situated in introns; more research is needed to uncover the underlying causal DNA variation(s).


Asunto(s)
Bovinos/genética , Ácidos Grasos/biosíntesis , Leche/metabolismo , Sitios de Carácter Cuantitativo , Animales , Mapeo Cromosómico , Cromosomas/genética , Ácidos Grasos/análisis , Ácidos Grasos/genética , Femenino , Estudio de Asociación del Genoma Completo , Leche/química
10.
Genet Sel Evol ; 48(1): 79, 2016 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-27760518

RESUMEN

BACKGROUND: Clinical mastitis is an inflammation of the mammary gland and causes significant costs to dairy production. It is unfavourably genetically correlated to milk production, and, thus, knowledge of the mechanisms that underlie these traits would be valuable to improve both of them simultaneously through breeding. A quantitative trait locus (QTL) that affects both clinical mastitis and milk production has recently been fine-mapped to around 89 Mb on bovine chromosome 6 (BTA6), but identification of the gene that underlies this QTL was not possible due to the strong linkage disequilibrium between single nucleotide polymorphisms (SNPs) within this region. Our aim was to identify the gene and, if possible, the causal polymorphism(s) responsible for this QTL through association analysis of high-density SNPs and imputed full sequence data in combination with analyses of transcript and protein levels of the identified candidate gene. RESULTS: Associations between SNPs and the studied traits were strongest for SNPs that were located within and immediately upstream of the group-specific component (GC) gene. This gene encodes the vitamin D-binding protein (DBP) and has multiple roles in immune defense and milk production. A 12-kb duplication that was identified downstream of this gene covered its last exon and segregated with the QTL allele that is associated with increased mastitis susceptibility and milk production. However, analyses of GC mRNA levels on the available samples revealed no differences in expression between animals having or lacking this duplication. Moreover, we detected no differences in the concentrations of DBP and its ligand vitamin D between the animals with different GC genotypes that were available for this study. CONCLUSIONS: Our results suggest GC as the gene that underlies the QTL for clinical mastitis and milk production. However, since only healthy animals were sampled for transcription and expression analyses, we could not draw any final conclusion on the absence of quantitative differences between animals with different genotypes. Future studies should investigate GC RNA expression and protein levels in cows with different genotypes during an infection.


Asunto(s)
Mastitis Bovina/genética , Leche , Sitios de Carácter Cuantitativo , Proteína de Unión a Vitamina D/genética , Alelos , Animales , Bovinos , Mapeo Cromosómico , Femenino , Frecuencia de los Genes , Haplotipos , Lactancia/genética , Desequilibrio de Ligamiento , Glándulas Mamarias Animales/fisiología , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
11.
Genome Biol Evol ; 8(4): 1012-22, 2016 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-26983822

RESUMEN

In several species genetic differentiation across environmental gradients or between geographically separate populations has been reported to center at "genomic islands of divergence," resulting in heterogeneous differentiation patterns across genomes. Here, genomic regions of elevated divergence were observed on three chromosomes of the highly mobile fish Atlantic cod (Gadus morhua) within geographically fine-scaled coastal areas. The "genomic islands" extended at least 5, 9.5, and 13 megabases on linkage groups 2, 7, and 12, respectively, and coincided with large blocks of linkage disequilibrium. For each of these three chromosomes, pairs of segregating, highly divergent alleles were identified, with little or no gene exchange between them. These patterns of recombination and divergence mirror genomic signatures previously described for large polymorphic inversions, which have been shown to repress recombination across extensive chromosomal segments. The lack of genetic exchange permits divergence between noninverted and inverted chromosomes in spite of gene flow. For the rearrangements on linkage groups 2 and 12, allelic frequency shifts between coastal and oceanic environments suggest a role in ecological adaptation, in agreement with recently reported associations between molecular variation within these genomic regions and temperature, oxygen, and salinity levels. Elevated genetic differentiation in these genomic regions has previously been described on both sides of the Atlantic Ocean, and we therefore suggest that these polymorphisms are involved in adaptive divergence across the species distributional range.


Asunto(s)
Inversión Cromosómica , Gadus morhua/genética , Polimorfismo de Nucleótido Simple , Adaptación Fisiológica , Animales , Cromosomas/genética , Gadus morhua/fisiología , Flujo Génico , Genoma , Desequilibrio de Ligamiento , Metagenómica
12.
Sci Rep ; 6: 23246, 2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26983361

RESUMEN

Identification of genome-wide patterns of divergence provides insight on how genomes are influenced by selection and can reveal the potential for local adaptation in spatially structured populations. In Atlantic cod - historically a major marine resource - Northeast-Arctic- and Norwegian coastal cod are recognized by fundamental differences in migratory and non-migratory behavior, respectively. However, the genomic architecture underlying such behavioral ecotypes is unclear. Here, we have analyzed more than 8.000 polymorphic SNPs distributed throughout all 23 linkage groups and show that loci putatively under selection are localized within three distinct genomic regions, each of several megabases long, covering approximately 4% of the Atlantic cod genome. These regions likely represent genomic inversions. The frequency of these distinct regions differ markedly between the ecotypes, spawning in the vicinity of each other, which contrasts with the low level of divergence in the rest of the genome. The observed patterns strongly suggest that these chromosomal rearrangements are instrumental in local adaptation and separation of Atlantic cod populations, leaving footprints of large genomic regions under selection. Our findings demonstrate the power of using genomic information in further understanding the population dynamics and defining management units in one of the world's most economically important marine resources.


Asunto(s)
Gadus morhua/genética , Reordenamiento Génico/fisiología , Genoma , Migración Animal , Animales , Teorema de Bayes , Ecotipo , Variación Genética , Genotipo , Heterocigoto , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple
13.
BMC Genet ; 12: 70, 2011 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-21835015

RESUMEN

BACKGROUND: Previous fine mapping studies in Norwegian Red cattle (NRC) in the region 86-90.4 Mb on Bos taurus chromosome 6 (BTA6) has revealed a quantitative trait locus (QTL) for protein yield (PY) around 88 Mb and a QTL for clinical mastitis (CM) around 90 Mb. The close proximity of these QTLs may partly explain the unfavorable genetic correlation between these two traits in NRC. A long range haplotype covering this region was introduced into the NRC population through the importation of a Holstein-Friesian bull (1606 Frasse) from Sweden in the 1970s. It has been suggested that this haplotype has a favorable effect on milk protein content but an unfavorable effect on mastitis susceptibility. Selective breeding for milk production traits is likely to have increased the frequency of this haplotype in the NRC population. RESULTS: Association mapping for PY and CM in NRC was performed using genotypes from 556 SNPs throughout the region 86-97 Mb on BTA6 and daughter-yield-deviations (DYDs) from 2601 bulls made available from the Norwegian dairy herd recording system. Highest test scores for PY were found for single-nucleotide polymorphisms (SNPs) within and surrounding the genes CSN2 and CSN1S2, coding for the ß-casein and α(S2)-casein proteins. High coverage re-sequencing by high throughput sequencing technology enabled molecular characterization of a long range haplotype from 1606 Frasse encompassing these two genes. Haplotype analysis of a large number of descendants from this bull indicated that the haplotype was not markedly disrupted by recombination in this region. The haplotype was associated with both increased milk protein content and increased susceptibility to mastitis, which might explain parts of the observed genetic correlation between PY and CM in NRC. Plausible causal polymorphisms affecting PY were detected in the promoter region and in the 5'-flanking UTR of CSN1S2. These polymorphisms could affect transcription or translation of CSN1S2 and thereby affect the amount of α(S2)-casein in milk. Highest test scores for CM were found in the region 89-91 Mb on BTA6, very close to a cluster of genes coding for CXC chemokines. Expression levels of some of these CXC chemokines have previously been shown to increase in bovine mammary gland cell lines after exposure to bacterial cell wall components. CONCLUSION: Molecular characterization of the long range haplotype from the Holstein-Friesian bull 1606 Frasse, imported into NRC in the 1970s, revealed polymorphisms that could affect transcription or translation of the casein gene CSN1S2. Sires with this haplotype had daughters with significantly elevated milk protein content and selection for milk production traits is likely to have increased the frequency of this haplotype in the NRC population. The haplotype was also associated with increased mastitis susceptibility, which might explain parts of the genetic correlation between PY and CM in NRC.


Asunto(s)
Predisposición Genética a la Enfermedad , Haplotipos , Mastitis Bovina/genética , Polimorfismo de Nucleótido Simple , Animales , Caseínas/genética , Bovinos , Mapeo Cromosómico , Femenino , Masculino , Proteínas de la Leche/análisis , Sitios de Carácter Cuantitativo
14.
BMC Genomics ; 12: 33, 2011 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-21232164

RESUMEN

BACKGROUND: Comparison of recent patterns of recombination derived from linkage maps to historical patterns of recombination from linkage disequilibrium (LD) could help identify genomic regions affected by strong artificial selection, appearing as reduced recent recombination. Norwegian Red cattle (NRF) make an interesting case study for investigating these patterns as it is an admixed breed with an extensively recorded pedigree. NRF have been under strong artificial selection for traits such as milk and meat production, fertility and health. While measures of LD is also crucial for determining the number of markers required for association mapping studies, estimates of recombination rate can be used to assess quality of genomic assemblies. RESULTS: A dataset containing more than 17,000 genome-wide distributed SNPs and 2600 animals was used to assess recombination rates and LD in NRF. Although low LD measured by r2 was observed in NRF relative to some of the breeds from which this breed originates, reports from breeds other than those assessed in this study have described more rapid decline in r2 at short distances than what was found in NRF. Rate of decline in r2 for NRF suggested that to obtain an expected r2 between markers and a causal polymorphism of at least 0.5 for genome-wide association studies, approximately one SNP every 15 kb or a total of 200,000 SNPs would be required. For well known quantitative trait loci (QTLs) for milk production traits on Bos Taurus chromosomes 1, 6 and 20, map length based on historic recombination was greater than map length based on recent recombination in NRF. Further, positions for 130 previously unpositioned contigs from assembly of the bovine genome sequence (Btau_4.0) found using comparative sequence analysis were validated by linkage analysis, and 28% of these positions corresponded to extreme values of population recombination rate. CONCLUSION: While LD is reduced in NRF compared to some of the breeds from which this admixed breed originated, it is elevated over short distances compared to some other cattle breeds. Genomic regions in NRF where map length based on historic recombination was greater than map length based on recent recombination coincided with some well known QTL regions for milk production traits. Linkage analysis in combination with comparative sequence analysis and detection of regions with extreme values of population recombination rate proved to be valuable for detecting problematic regions in the Btau_4.0 genome assembly.


Asunto(s)
Recombinación Genética/genética , Animales , Bovinos , Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento/genética , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética
15.
BMC Genomics ; 10: 180, 2009 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-19393050

RESUMEN

BACKGROUND: We present here the assembly of the bovine genome. The assembly method combines the BAC plus WGS local assembly used for the rat and sea urchin with the whole genome shotgun (WGS) only assembly used for many other animal genomes including the rhesus macaque. RESULTS: The assembly process consisted of multiple phases: First, BACs were assembled with BAC generated sequence, then subsequently in combination with the individual overlapping WGS reads. Different assembly parameters were tested to separately optimize the performance for each BAC assembly of the BAC and WGS reads. In parallel, a second assembly was produced using only the WGS sequences and a global whole genome assembly method. The two assemblies were combined to create a more complete genome representation that retained the high quality BAC-based local assembly information, but with gaps between BACs filled in with the WGS-only assembly. Finally, the entire assembly was placed on chromosomes using the available map information.Over 90% of the assembly is now placed on chromosomes. The estimated genome size is 2.87 Gb which represents a high degree of completeness, with 95% of the available EST sequences found in assembled contigs. The quality of the assembly was evaluated by comparison to 73 finished BACs, where the draft assembly covers between 92.5 and 100% (average 98.5%) of the finished BACs. The assembly contigs and scaffolds align linearly to the finished BACs, suggesting that misassemblies are rare. Genotyping and genetic mapping of 17,482 SNPs revealed that more than 99.2% were correctly positioned within the Btau_4.0 assembly, confirming the accuracy of the assembly. CONCLUSION: The biological analysis of this bovine genome assembly is being published, and the sequence data is available to support future bovine research.


Asunto(s)
Bovinos/genética , Genoma , Genómica/métodos , Animales , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos , Marcadores Genéticos , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...