Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
2.
Cell Mol Biol (Noisy-le-grand) ; 69(5): 197-206, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37571879

RESUMEN

Oxidative stress has been shown to cause an alteration of intracellular signaling in adipocytes that may lead to various comorbidities of obesity and cardiovascular complications. Evidence suggests that dysregulation of Na, K-ATPase signaling can contribute to systemic inflammation and redox signaling that leads to various metabolic disturbances. Hence the present study aims to explore the specific role of adipocyte Na, K-ATPase signaling in the amelioration of pathophysiological alterations of experimental uremic cardiomyopathy. Experimental uremic cardiomyopathy was induced by partial nephrectomy (PNx), and adipocyte-specific expression of NaKtide, a peptide that inhibits Na, K-ATPase signaling, was achieved using a lentivirus construct with NaKtide expression driven by an adiponectin promoter. Cardiomyopathy and anemia induced in partial nephrectomy mice were accompanied by an altered molecular phenotype of adipocytes, increased systemic inflammatory cytokines and oxidant stress within 4 weeks. These changes were significantly worsened by the addition of a Western diet (enriched in fat and fructose contents) but were prevented with specific expression of NaKtide in adipocytes. The skeletal muscle-specific expression of NaKtide did not ameliorate the disease phenotype. Adipocyte dysfunction and uremic cardiomyopathy developed in PNx mice, both were significantly ameliorated by the adipocyte-specific expression of NaKtide. These findings suggest that oxidative milieu in the adipocyte has a pivotal role in the development and progression of uremic cardiomyopathy in mice subjected to partial nephrectomy. If confirmed in humans, this may be a lead for future research to explore novel therapeutic targets in chronic renal failure.


Asunto(s)
Cardiomiopatías , Humanos , Ratones , Animales , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Transducción de Señal , Estrés Oxidativo , Péptidos/metabolismo , Adipocitos/metabolismo
3.
Front Cardiovasc Med ; 10: 1046495, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180782

RESUMEN

Introduction: Adipose tissue constantly secretes adipokines and extracellular vesicles including exosomes to crosstalk with distinct tissues and organs for whole-body homeostasis. However, dysfunctional adipose tissue under chronic inflammatory conditions such as obesity, atherosclerosis, and diabetes shows pro-inflammatory phenotypes accompanied by oxidative stress and abnormal secretion. Nevertheless, molecular mechanisms of how adipocytes are stimulated to secrete exosomes under those conditions remain poorly understood. Methods: Mouse and human in vitro cell culture models were used for performing various cellular and molecular studies on adipocytes and macrophages. Statistical analysis was performed using Student's t-test (two-tailed, unpaired, and equal variance) for comparisons between two groups or ANOVA followed by Bonferroni's multiple comparison test for comparison among more than two groups. Results and discussion: In this work, we report that CD36, a scavenger receptor for oxidized LDL, formed a signaling complex with another membrane signal transducer Na/K-ATPase in adipocytes. The atherogenic oxidized LDL induced a pro-inflammatory response in in vitro differentiated mouse and human adipocytes and also stimulated the cells to secrete more exosomes. This was largely blocked by either CD36 knockdown using siRNA or pNaKtide, a peptide inhibitor of Na/K-ATPase signaling. These results showed a critical role of the CD36/Na/K-ATPase signaling complex in oxidized LDL-induced adipocyte exosome secretion. Moreover, by co-incubation of adipocyte-derived exosomes with macrophages, we demonstrated that oxidized LDL-induced adipocyte-derived exosomes promoted pro-atherogenic phenotypes in macrophages, including CD36 upregulation, IL-6 secretion, metabolic switch to glycolysis, and mitochondrial ROS production. Altogether, we show here a novel mechanism through which adipocytes increase exosome secretion in response to oxidized LDL and that the secreted exosomes can crosstalk with macrophages, which may contribute to atherogenesis.

4.
Cell Mol Biol (Noisy-le-grand) ; 69(2): 162-171, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37224028

RESUMEN

We have previously reported that the α1 subunit of sodium-potassium adenosine triphosphatase (Na/K-ATPase), acts as a receptor and an amplifier for reactive oxygen species, in addition to its distinct pumping function. On this background, we speculated that the blockade of Na/K-ATPase-induced ROS amplification with a specific peptide, pNaKtide, might attenuate the development of steatohepatitis. To test this hypothesis, pNaKtide was administered to a murine model of NASH: the C57Bl6 mouse fed a "western" diet containing high amounts of fat and fructose. The administration of pNaKtide reduced obesity as well as hepatic steatosis, inflammation and fibrosis. Of interest, we also noted a marked improvement in mitochondrial fatty acid oxidation, insulin sensitivity, dyslipidemia and aortic streaking in this mouse model. To further elucidate the effects of pNaKtide on atherosclerosis, similar studies were performed in ApoE knockout mice also exposed to the western diet. In these mice, pNaKtide not only improved steatohepatitis, dyslipidemia, and insulin sensitivity but also ameliorated significant aortic atherosclerosis. Collectively, this study demonstrates that the Na/K-ATPase/ROS amplification loop contributes significantly to the development and progression of steatohepatitis and atherosclerosis. Furthermore, this study presents a potential treatment, the pNaKtide, for the metabolic syndrome phenotype.


Asunto(s)
Aterosclerosis , Hígado Graso , Resistencia a la Insulina , Animales , Ratones , Dieta Occidental/efectos adversos , Especies Reactivas de Oxígeno , Aterosclerosis/tratamiento farmacológico , Hígado Graso/tratamiento farmacológico , Ratones Endogámicos C57BL , Adenosina Trifosfatasas
5.
Cureus ; 15(3): e36468, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37090413

RESUMEN

BACKGROUND:  Substance abuse poses considerable clinical, economic, and social challenges. West Virginia is hailed as the epicenter of the substance abuse in the United States, the prevalence and pattern of different trauma mechanisms in a rural context or in patients with different forms of substance abuse remain unclear. OBJECTIVE:  We performed the following analysis to understand the prevalence of substance abuse in patients with different trauma mechanisms in the rural setting with high substance abuse in the West Virginia. METHODS:  We performed a cross-sectional retrospective analysis of adult trauma patients (motor vehicle, fall, assault, firearm suicide, brawl/rape and machinery) hospitalized in two tertiary care hospitals in West Virginia between 2006 and 2016. We identified all patients who had a urine drug screen (UDS) test and extracted the data related to the substance and trauma. RESULTS:  Among 8734 patients screened using UDS, 5940 (68.1%) patients were tested positive for the substance. Opiates, alcohol, benzodiazepines, and cannabis were the four most common substances identified in trauma victims. In all instances, the prescribed drug was less than 20%. Fatal outcome was observed in 366 patients in the sample, with 44% (n=162) testing positive for UDS, 12% (n=45) testing positive for only alcohol, and 15% (n=56) testing positive for both alcohol and UDS. Regarding the trauma mechanism, the motor vehicle accident (MVA) was the most prominent with a clear association of substance abuse with fatal outcome. CONCLUSION:  The most prevalent trauma mechanism was a MVA, with a strong link between drug usage and mortality. Due to the high incidence of positive substance abuse screens, UDS tests may need to be more widely implemented in trauma in the West Virginia region. The findings of this study might help in establishing regional or national policies to reduce acute substance abuse.

6.
J Clin Med Sci ; 7(4)2023.
Artículo en Inglés | MEDLINE | ID: mdl-38283397

RESUMEN

Obesity is a growing public health crisis across the world and has been recognized as an underlying risk factor for metabolic syndrome. Growing evidence demonstrates the critical role of oxidative stress in the pathophysiological mechanisms of obesity and related metabolic dysfunction. As we have established previously that Na/K-ATPase can amplify oxidative stress signaling, we aimed to explore the effect of inhibition of this pathway on obesity phenotype using the peptide antagonist, pNaKtide. The experiments performed in murine preadipocytes showed the dose-dependent effect of pNaKtide in attenuating oxidant stress and lipid accumulation. Furthermore, these in vitro findings were confirmed in C57Bl6 mice fed a high-fat diet. Interestingly, pNaKtide could significantly reduce body weight, ameliorate systemic oxidative and inflammatory milieu and improve insulin sensitivity in obese mice. Hence the study demonstrates the therapeutic utility of pNaKtide as an inhibitor of Na/K-ATPase oxidant amplification signaling to alleviate obesity and associated comorbidities.

7.
Front Aging Neurosci ; 14: 1020092, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36268187

RESUMEN

COVID-19 is renowned as a multi-organ disease having subacute and long-term effects with a broad spectrum of clinical manifestations. The evolving scientific and clinical evidence demonstrates that the frequency of cognitive impairment after COVID-19 is high and it is crucial to explore more clinical research and implement proper diagnostic and treatment strategies. Several central nervous system complications have been reported as comorbidities of COVID-19. The changes in cognitive function associated with neurodegenerative diseases develop slowly over time and are only diagnosed at an already advanced stage of molecular pathology. Hence, understanding the common links between COVID-19 and neurodegenerative diseases will broaden our knowledge and help in strategizing prognostic and therapeutic approaches. The present review focuses on the diverse neurodegenerative changes associated with COVID-19 and will highlight the importance of major circulating biomarkers and microRNAs (miRNAs) associated with the disease progression and severity. The literature analysis showed that major proteins associated with central nervous system function, such as Glial fibrillary acidic protein, neurofilament light chain, p-tau 181, Ubiquitin C-terminal hydrolase L1, S100 calcium-binding protein B, Neuron-specific enolase and various inflammatory cytokines, were significantly altered in COVID-19 patients. Furthermore, among various miRNAs that are having pivotal roles in various neurodegenerative diseases, miR-146a, miR-155, Let-7b, miR-31, miR-16 and miR-21 have shown significant dysregulation in COVID-19 patients. Thus the review consolidates the important findings from the numerous studies to unravel the underlying mechanism of neurological sequelae in COVID-19 and the possible association of circulatory biomarkers, which may serve as prognostic predictors and therapeutic targets in future research.

8.
iScience ; 25(9): 104963, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36072548

RESUMEN

Na/K-ATPase (NKA), besides its ion transporter function, is a signal transducer by regulating Src family kinases (SFK). The signaling NKA contributes to oxidized LDL-induced macrophage foam cell formation and interacts with TLR4. However, its role in lipopolysaccharides (LPS)-induced signaling and glycolytic switch in macrophages remains unclear. Using peritoneal macrophages from NKA α1 haploinsufficient mice (NKA α1+/-), we found that NKA α1 haploinsufficiency led to enhanced LPS-stimulated NF-κB pathway, ROS signaling, and pro-inflammatory cytokines. Intraperitoneal injection of LPS resulted in more severe lung inflammation and injury with lower survival rate in NKA α1+/- mice. Additionally, LPS induced a higher extent of the metabolic switch from oxidative phosphorylation to glycolysis. Mechanistically, NKA α1 interacted with TLR4 and Lyn. The presence of NKA α1 in this complex attenuated Lyn activation by LPS, which subsequently restricted the downstream ROS and NF-κB signaling. In conclusion, we demonstrated that NKA α1 suppresses LPS-induced macrophage pro-inflammatory signaling through Lyn.

9.
Front Pharmacol ; 13: 953178, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36034829

RESUMEN

Cardiotoxicity is a well-known pathophysiological consequence in breast cancer patients receiving trastuzumab. Trastuzumab related cardiotoxicity typically results in an overall decline in cardiac function, primarily characterized by reduction in left ventricular ejection fraction (LVEF) and development of symptoms associated with heart failure. Current strategies for the monitoring of cardiac function, during trastuzumab therapy, includes serial echocardiography, which is cost ineffective as well as offers limited specificity, while offering limited potential in monitoring early onset of cardiotoxicity. However, biomarkers have been shown to be aberrant prior to any detectable functional or clinical deficit in cardiac function. Hence, this study aims to develop a panel of novel biomarkers and circulating miRNAs for the early screening of trastuzumab induced cardiotoxicity. Patients with clinical diagnosis of invasive ductal carcinoma were enrolled in the study, with blood specimen collected and echocardiography performed prior to trastuzumab therapy initiation at baseline, 3- and 6-months post trastuzumab therapy. Following 6-months of trastuzumab therapy, about 18% of the subjects developed cardiotoxicity, as defined by reduction in LVEF. Our results showed significant upregulation of biomarkers and circulating miRNAs, specific to cardiac injury and remodeling, at 3- and 6-months post trastuzumab therapy. These biomarkers and circulating miRNAs significantly correlated with the cardiac injury specific markers, troponin I and T. The findings in the present study demonstrates the translational applicability of the proposed biomarker panel in early preclinical diagnosis of trastuzumab induced cardiotoxicity, further allowing management of cardiac function decline and improved health outcomes for breast cancer patients.

10.
Int J Mol Sci ; 23(13)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35806364

RESUMEN

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality worldwide, with an estimate of 0.84 million cases every year. In Western countries, because of the obesity epidemic, non-alcoholic steatohepatitis (NASH) has become the major cause of HCC. Intriguingly, the molecular mechanisms underlying tumorigenesis of HCC from NASH are largely unknown. We hypothesized that the growing uncoupled metabolism during NASH progression to HCC, manifested by lower cell redox status and an apoptotic 'switch' activity, follows a dysregulation of α1-Na/K-ATPase (NKA)/Src signalosome. Our results suggested that in NASH-related malignancy, α1-NKA signaling causes upregulation of the anti-apoptotic protein survivin and downregulation of the pro-apoptotic protein Smac/DIABLO via the activation of the PI3K → Akt pro-survival pathway with concomitant inhibition of the FoxO3 circuit, favoring cell division and primary liver carcinogenesis. Signalosome normalization using an inhibitory peptide resets apoptotic activity in malignant cells, with a significant decrease in tumor burden in vivo. Therefore, α1-NKA signalosome exercises in HCC the characteristic of a tumor suppressor, suggesting α1-NKA as a putative target for clinical therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , ATPasa Intercambiadora de Sodio-Potasio , Carcinogénesis/metabolismo , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
11.
PLoS One ; 17(7): e0272117, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35901050

RESUMEN

Dilated cardiomyopathy (DCM) is a major cause of cardiac death and heart transplantation. It has been known that black people have a higher incidence of heart failure and related diseases compared to white people. To identify the relationship between gene expression and cardiac function in DCM patients, we performed pathway analysis and weighted gene co-expression network analysis (WGCNA) using RNA-sequencing data (GSE141910) from the NCBI Gene Expression Omnibus (GEO) database and identified several gene modules that were significantly associated with the left ventricle ejection fraction (LVEF) and DCM phenotype. Genes included in these modules are enriched in three major categories of signaling pathways: fibrosis-related, small molecule transporting-related, and immune response-related. Through consensus analysis, we found that gene modules associated with LVEF in African Americans are almost identical as in Caucasians, suggesting that the two groups may have more common rather than disparate genetic regulations in the etiology of DCM. In addition to the identified modules, we found that the gene expression level of Na/K-ATPase, an important membrane ion transporter, has a strong correlation with the LVEF. These clinical results are consistent with our previous findings and suggest the clinical significance of Na/K-ATPase regulation in DCM.


Asunto(s)
Cardiomiopatía Dilatada , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Función Ventricular Izquierda
15.
Am J Physiol Renal Physiol ; 322(6): F655-F666, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35435001

RESUMEN

We have previously demonstrated that the Na-K-ATPase signaling-mediated oxidant amplification loop contributes to experimental uremic cardiomyopathy and anemia induced by 5/6th partial nephrectomy (PNx). This process can be ameliorated by systemic administration of the peptide pNaKtide, which was designed to block this oxidant amplification loop. The present study demonstrated that the PNx-induced anemia is characterized by marked decreases in red blood cell (RBC) survival as assessed by biotinylated RBC clearance and eryptosis as assessed by annexin V binding. No significant change in iron homeostasis was observed. Examination of plasma samples demonstrated that PNx induced significant increases in systemic oxidant stress as assessed by protein carbonylation, plasma erythropoietin concentration, and blood urea nitrogen. Systemic administration of pNaKtide, but not NaKtide (pNaKtide without the TAT leader sequence) and a scramble "pNaKtide" (sc-pNaKtide), led to the normalization of hematocrit, RBC survival, and plasma protein carbonylation. Administration of the three peptides had no significant effect on PNx-induced increases in plasma erythropoietin and blood urea nitrogen without notable changes in iron metabolism. These data indicate that blockage of the Na-K-ATPase signaling-mediated oxidant amplification loop ameliorates the anemia of experimental renal failure by increasing RBC survival.NEW & NOTEWORTHY The anemia of CKD is multifactorial, and the current treatment based primarily on stimulating bone marrow production of RBCs with erythropoietin or erythropoietin analogs is unsatisfactory. In a murine model of CKD that is complicated by anemia, blockade of Na-K-ATPase signaling with a specific peptide (pNaKtide) ameliorated the anemia primarily by increasing RBC survival. Should these results be confirmed in patients, this strategy may allow for novel and potentially additive strategies to treat the anemia of CKD.


Asunto(s)
Anemia , Eritropoyetina , Insuficiencia Renal Crónica , Anemia/tratamiento farmacológico , Anemia/etiología , Animales , Eritrocitos/metabolismo , Eritropoyetina/metabolismo , Eritropoyetina/farmacología , Femenino , Semivida , Humanos , Hierro/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Nefrectomía , Oxidantes , Péptidos/metabolismo , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
16.
Cureus ; 14(2): e22434, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35371719

RESUMEN

The development of the Prescription Drug Monitoring Program (PDMP) led to an innovation in the healthcare organization system (HCOs). The PDMP system has been utilized in different states at various organizational levels in an effort to achieve improved health outcomes, reduce the number of prescription drug overdoses, and lighten the economic burden that follows. However, during the implementation of PDMP, there were several barriers and limitations that were discovered. Those barriers impeded the process of utilization of PDMP, such as the complex user interface and lack of training for healthcare providers. The purpose of this paper was to examine the advances and limitations in the utilization and implementation of PDMP in the US healthcare industry and develop strategies for effective use of PDMP in West Virginia. The qualitative part of this paper was a literature review. The paper referred to several peer-reviewed studies and research articles from several reliable resources, which were reached by databases or Google Scholar. A total of 44 articles were reviewed for this study. The implementation of the PDMP was influenced by benefits and barriers. This article reviewed several studies in general that demonstrated positive outcomes from the implementation of PDMP, including a reduced number of prescription drug overdoses, coordinated care for patients, and improved health outcomes. However, the barriers and limitations were not neglected, which mainly include integration of PDMP into the electronic health record (EHR) system, lack of training for the providers, and lack of basic standards for the use of PDMP. Although the new health reforms encouraged the adaption of PDMP among providers, data reporting and data interpretation still remain major concerns for assessing the health outcomes of PDMP implementation.

17.
Obesity (Silver Spring) ; 30(4): 869-873, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35048549

RESUMEN

OBJECTIVE: The triad of obesity, a high-protein diet from animal sources, and disturbed gut microbiota have been linked to poor clinical outcomes in patients with COVID-19. In this report, the effect of oxidative stress resulting from the Na+ /K+ -ATPase transporter signaling cascade is explored as a driver of this poor clinical outcome. METHODS: Protein-protein interactions with the SARS-CoV-2 proteome were identified from the interactome data for Na+ /K+ -transporting ATPase subunit α-1 (ATP1A1), epidermal growth factor receptor, and ERB-B2 receptor tyrosine kinase 2, using the curated data from the BioGRID Database of Protein Interactions. Data for the gene expression pattern of inflammatory response were from the Gene Expression Omnibus database for cardiomyocytes post SARS-CoV-2 infection (number GSE151879). RESULTS: The ATP1A1 subunit of the Na+ /K+ -ATPase transporter is targeted by multiple SARS-CoV-2 proteins. Furthermore, receptor proteins associated with inflammatory response, including epidermal growth factor receptor and ERB-B2 receptor tyrosine kinase 2 (which interact with ATP1A1), are also targeted by some SARS-CoV-2 proteins. This heightened interaction likely triggers a cytokine release that increases the severity of the viral infection in individuals with obesity. CONCLUSIONS: The similarities between the effects of SARS-CoV-2 proteins and indoxyl sulphate on the Na+ /K+ -ATPase transporter signaling cascade suggest the possibility of an augmentation of gene changes seen with COVID-19 infection that can result in a hyperinduction of cytokine release in individuals with obesity.


Asunto(s)
COVID-19 , Microbioma Gastrointestinal , Animales , Dieta , Humanos , Obesidad/genética , SARS-CoV-2 , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
18.
iScience ; 24(11): 103262, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34755095

RESUMEN

Recent studies suggest that a western diet may contribute to clinical neurodegeneration and dementia. Adipocyte-specific expression of the Na,K-ATPase signaling antagonist, NaKtide, ameliorates the pathophysiological consequences of murine experimental obesity and renal failure. In this study, we found that a western diet produced systemic oxidant stress along with evidence of activation of Na,K-ATPase signaling within both murine brain and peripheral tissues. We also noted this diet caused increases in circulating inflammatory cytokines as well as behavioral, and brain biochemical changes consistent with neurodegeneration. Adipocyte specific NaKtide affected by a doxycycline on/off expression system ameliorated all of these diet effects. These data suggest that a western diet produces cognitive decline and neurodegeneration through augmented Na,K-ATPase signaling and that antagonism of this pathway in adipocytes ameliorates the pathophysiology. If this observation is confirmed in humans, the adipocyte Na,K-ATPase may serve as a clinical target in the therapy of neurodegenerative disorders.

19.
Front Mol Neurosci ; 14: 756499, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34690698

RESUMEN

There has been a progressive increase in the prevalence of obesity and its comorbidities such as type 2 diabetes and cardiovascular diseases worldwide. Recent studies have suggested that the crosstalk between adipose tissue and central nervous system (CNS), through cellular mediators and signaling pathways, may causally link obesity with cognitive decline and give rise to neurodegenerative disorders. Several mechanisms have been proposed in obesity, including inflammation, oxidative stress, insulin resistance, altered lipid and cholesterol homeostasis, which may result in neuroinflammation, altered brain insulin signaling, amyloid-beta (Aß) deposition and neuronal cell death. Since obesity is associated with functional and morphological alterations in the adipose tissues, the resulting peripheral immune response augments the development and progression of cognitive decline and increases susceptibility of neurodegenerative disorders, such as Alzheimer's Disease (AD) and Parkinson's Disease (PD). Studies have also elucidated an important role of high fat diet in the exacerbation of these clinical conditions. However, the underlying factors that propel and sustain this obesity associated cognitive decline and neurodegeneration, remains highly elusive. Moreover, the mechanisms linking these phenomena are not well-understood. The cumulative line of evidence have demonstrated an important role of microRNAs (miRNAs), a class of small non-coding RNAs that regulate gene expression and transcriptional changes, as biomarkers of pathophysiological conditions. Despite the lack of utility in current clinical practices, miRNAs have been shown to be highly specific and sensitive to the clinical condition being studied. Based on these observations, this review aims to assess the role of several miRNAs and aim to elucidate underlying mechanisms that link obesity with cognitive decline and neurodegenerative disorders. Furthermore, this review will also provide evidence for the effect of dietary modulation which can potentially ameliorate cognitive decline and neurodegenerative diseases associated with obesity.

20.
J Membr Biol ; 254(5-6): 513-529, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34297135

RESUMEN

In different large-scale clinic outcome trials, sodium (Na+)/glucose co-transporter 2 (SGLT2) inhibitors showed profound cardiac- and renal-protective effects, making them revolutionary treatments for heart failure and kidney disease. Different theories are proposed according to the emerging protective effects other than the original purpose of glucose-lowering in diabetic patients. As the ATP-dependent primary ion transporter providing the Na+ gradient to drive other Na+-dependent transporters, the possible role of the sodium-potassium adenosine triphosphatase (Na/K-ATPase) as the primary ion transporter and its signaling function is not explored.


Asunto(s)
Transducción de Señal , Glucosa , Humanos , Riñón/metabolismo , Sodio/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA