Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nutrients ; 12(10)2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33036430

RESUMEN

Fructose consumption by rodents modulates both hepatic and intestinal lipid metabolism and gluconeogenesis. We have previously demonstrated that in utero exposure to dexamethasone (DEX) interacts with fructose consumption during adult life to exacerbate hepatic steatosis in rats. The aim of this study was to clarify if adult rats born to DEX-treated mothers would display differences in intestinal gluconeogenesis after excessive fructose intake. To address this issue, female Wistar rats were treated with DEX during pregnancy and control (CTL) mothers were kept untreated. Adult offspring born to CTL and DEX-treated mothers were assigned to receive either tap water (Control-Standard Chow (CTL-SC) and Dexamethasone-Standard Chow (DEX-SC)) or 10% fructose in the drinking water (CTL-fructose and DEX-fructose). Fructose consumption lasted for 80 days. All rats were subjected to a 40 h fasting before sample collection. We found that DEX-fructose rats have increased glucose and reduced lactate in the portal blood. Jejunum samples of DEX-fructose rats have enhanced phosphoenolpyruvate carboxykinase (PEPCK) expression and activity, higher facilitated glucose transporter member 2 (GLUT2) and facilitated glucose transporter member 5 (GLUT5) content, and increased villous height, crypt depth, and proliferating cell nuclear antigen (PCNA) staining. The current data reveal that rats born to DEX-treated mothers that consume fructose during adult life have increased intestinal gluconeogenesis while recapitulating metabolic and morphological features of the neonatal jejunum phenotype.


Asunto(s)
Dexametasona/efectos adversos , Carbohidratos de la Dieta/efectos adversos , Células Epiteliales/patología , Fructosa/efectos adversos , Gluconeogénesis , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Yeyuno/metabolismo , Exposición Materna/efectos adversos , Intercambio Materno-Fetal/fisiología , Efectos Tardíos de la Exposición Prenatal , Fenómenos Fisiológicos Nutricionales de los Animales/fisiología , Animales , Femenino , Transportador de Glucosa de Tipo 2/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metabolismo de los Lípidos , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Embarazo , Ratas Wistar
2.
Nutrients ; 11(9)2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31491968

RESUMEN

Distinct environmental insults might interact with fructose consumption and contribute to the development of metabolic disorders. To address whether in utero glucocorticoid exposure and fructose intake modulate metabolic responses, adult female Wistar rats were exposed to dexamethasone (DEX) during pregnancy, and the offspring were administered fructose at a later time. Briefly, dams received DEX during the third period of pregnancy, while control dams remained untreated. Offspring born to control and DEX-treated mothers were defined as CTL-off and DEX-off, respectively, while untreated animals were designated CTL-off-CTL and DEX-off-CTL. CLT-off and DEX-off treated with 10% fructose in the drinking water for 8 weeks are referred to as CTL-off-FRU and DEX-off-FRU. We found that fructose promoted glucose intolerance and whole-body gluconeogenesis in both CTL-off-FRU and DEX-off-FRU animals. On the other hand, hepatic lipid accumulation was significantly stimulated in DEX-off-FRU rats when compared to the CTL-off-FRU group. The DEX-off-FRU group also displayed impaired very-low-density lipoprotein (VLDL) production and reduced hepatic expression of apoB, mttp, and sec22b. DEX-off-FRU has lower hepatic levels of autophagy markers. Taken together, our results support the unprecedented notion that in utero glucocorticoid exposure exacerbates hepatic steatosis caused by fructose consumption later in life.


Asunto(s)
Dexametasona/toxicidad , Azúcares de la Dieta/toxicidad , Hígado Graso/inducido químicamente , Fructosa/toxicidad , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal , Animales , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Hígado Graso/genética , Hígado Graso/metabolismo , Hígado Graso/patología , Femenino , Edad Gestacional , Gluconeogénesis/efectos de los fármacos , Metabolismo de los Lípidos/genética , Lipoproteínas VLDL/metabolismo , Hígado/metabolismo , Hígado/patología , Masculino , Embarazo , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Ratas Wistar
3.
Sci Rep ; 7(1): 10367, 2017 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-28871187

RESUMEN

We investigated the effect of dexamethasone during the last week of pregnancy on glucose and lipid metabolism in male offspring. Twelve-week old offspring were evaluated after fasting for 12-hours (physiological) and 60-hours (prolonged). Physiological fasting resulted in glucose intolerance, decreased glucose clearance after pyruvate load and increased PEPCK expression in rats born to dexamethasone-treated mothers (DEX). Prolonged fasting resulted in increased glucose tolerance and increased glucose clearance after pyruvate load in DEX. These modulations were accompanied by accumulation of hepatic triglycerides (TG). Sixty-hour fasted DEX also showed increased citrate synthase (CS) activity, ATP citrate lyase (ACLY) content, and pyruvate kinase 2 (pkm2), glucose transporter 1 (slc2a1) and lactate dehydrogenase-a (ldha) expressions. Hepatic AKT2 was increased in 60-hour fasted DEX, in parallel with reduced miRNAs targeting the AKT2 gene. Altogether, we show that metabolic programming by prenatal dexamethasone is characterized by an unexpected hepatic TG accumulation during prolonged fasting. The underlying mechanism may depend on increased hepatic glycolytic flux due to increased pkm2 expression and consequent conversion of pyruvate to non-esterified fatty acid synthesis due to increased CS activity and ACLY levels. Upregulation of AKT2 due to reduced miRNAs may serve as a permanent mechanism leading to increased pkm2 expression.


Asunto(s)
Dexametasona/farmacología , Ayuno/metabolismo , Hígado/metabolismo , Exposición Materna/efectos adversos , Efectos Tardíos de la Exposición Prenatal , Triglicéridos/metabolismo , Animales , Biomarcadores , Femenino , Glucosa/metabolismo , Intolerancia a la Glucosa , Pruebas de Función Hepática , Embarazo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...