Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 330
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39166768

RESUMEN

Currently, one major target for exploring K-ion batteries (KIBs) is enhancing their cycle stability due to the intrinsically sluggish kinetics of large-radius K+ ions. Herein, we report a rationally designed electrode, the S/O co-doped hard carbon spheres with highly ordered porous characteristics (SPC), for extremely durable KIBs. Experimental results and theory calculations confirm that this structure offers exceptional advantages for high-performance KIBs, facilitating rapid K+ diffusion and (de)-intercalation, efficient electrolyte penetration and transport, improved K+ storage sites, and enhanced redox reaction kinetics, thus ensuring the long-term cycle stability. As a result, the as-constructed SPC anode delivers a high reversible capacity of ca. 200 mAh g-1 at a high current density of 2.0 A g-1 and robust stability with ∼100% capacity retention up to 11,000 cycles, outperforming most carbon-based KIB anodes. This work offers insight into developing advanced KIBs with durable stability toward practical applications.

2.
J Mater Chem A Mater ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39157537

RESUMEN

The oxygen evolution reaction (OER) is a key reaction in the production of green hydrogen by water electrolysis. In alkaline media, the current state of the art catalysts used for the OER are based on non-noble metal oxides. However, despite their huge potential as OER catalysts, these materials exhibit various disadvantages including lack of stability and conductivity that hinder the wide-spread utilization of these materials in alkaline electrolyzer devices. This study highlights the innovative chemical functionalization of a mixed copper cobalt hydroxide with the V2CT x MXene to enhance the OER efficiency, addressing the need for effective electrocatalytic interfaces for sustainable hydrogen production. The herein synthesized CuCo@V2CT x electrocatalysts demonstrate remarkable activity, outperforming the pure CuCo catalysts for the OER and moreover show increased efficiency after 12 hours of continuous operation. This strategic integration improved the water oxidation performance of the pure oxide material by improving the composite's hydrophilicity, charge transfer properties and ability to hinder Cu leaching. The materials were characterized using an array of materials characterization techniques to help decipher both structure of the composite materials after synthesis and to elucidate the reasoning for the OER enhancement for the composites. This work demonstrates the significant potential of TMO-based nanomaterials combined with V2CT x for advanced innovative electrocatalytic interfaces in energy conversion applications.

3.
Inorg Chem ; 63(32): 14851-14859, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39075950

RESUMEN

This study employs the molten-salt-shielded method to dope the Ti3AlC2 MAX phase with Nb and Mo, aiming to expand the intrinsic potential of the material. X-ray diffraction confirms the preservation of the hexagonal lattice structure of Ti3AlC2, while Raman and X-ray photoelectron spectroscopic analyses reveal the successful incorporation of dopants with subtle yet significant alterations in the vibrational modes and chemical environment. Scanning electron microscopy with energy-dispersive X-ray spectroscopy characterizations illustrate the characteristic layered morphology and uniform dopant distribution. Density functional theory simulations provide insights into the modified electronic structure, displaying changes in carrier transport mechanisms and potential increases in metallic conductivity, particularly when doping occurs at both the M and A sites. The computational findings are corroborated by the experimental results, suggesting that the enhanced material may possess improved properties for electronic applications. This comprehensive approach not only expands the MAX phase family but also tailors its functionality, which could allow for the production of hybrid materials with novel functionalities not present in the pristine form.

4.
Nat Commun ; 15(1): 6388, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39079965

RESUMEN

Solution-processable 2D semiconductor inks based on electrochemical molecular intercalation and exfoliation of bulk layered crystals using organic cations has offered an alternative pathway to low-cost fabrication of large-area flexible and wearable electronic devices. However, the growth of large-piece bulk crystals as starting material relies on costly and prolonged high-temperature process, representing a critical roadblock towards practical and large-scale applications. Here we report a general liquid-metal-assisted approach that enables the electrochemical molecular intercalation of low-cost and readily available crystal powders. The resulted solution-processable MoS2 nanosheets are of comparable quality to those exfoliated from bulk crystals. Furthermore, this method can create a rich library of functional 2D electronic inks ( >50 types), including 2D wide-bandgap semiconductors of low electrical conductivity. Lastly, we demonstrated the all-solution-processable integration of 2D semiconductors with 2D conductors and 2D dielectrics for the fabrication of large-area thin-film transistors and memristors at a greatly reduced cost.

5.
ACS Appl Nano Mater ; 7(12): 14102-14114, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38962508

RESUMEN

Designing a multifunctional device that combines solar energy conversion and energy storage is an appealing and promising approach for the next generation of green power and sustainable society. In this work, we fabricated a single-piece device incorporating undoped WSe2, Re- or Nb-doped WSe2 photocathode, and zinc foil anode system enabling a light-assisted rechargeable aqueous zinc metal cell. Comparison of structural, optical, and photoelectric characteristics of undoped and doped WSe2 has further confirmed that ionic insertion of donor metal (rhenium and niobium) plays an important role in enhancing photoelectrochemical energy storage properties. The electrochemical energy storage cell consisting of Re-doped WSe2 (as the photoactive cathode and zinc metal as anode) showed the best photodriven enhancement in the specific capacitance of around 45% due to efficient harvesting of visible light irradiation. The assembled device exhibited a loss of 20% of its initial specific capacitance after 1500 galvanostatic charge-discharge cycles at 50 mA g-1. The cell also provided a specific energy density of 574.21 mWh kg1- and a power density of 5906 mW kg1- at 15 mA g-1. Under otherwise similar conditions, the pristine WSe2 and Nb-doped WSe2 showed photoenhanced induced capacitance of 43% and 27% at 15 mA g-1 and supplied an energy density of 436.4 mWh kg1- and 202 mWh kg1-, respectively. As a result, a reasonable capacitance improvement obtained by the Re-WSe2 photoenhanced zinc-ion capacitor could provide a facile and constructive way to achieve a highly efficient and low-cost solar-electrochemical capacitor system.

6.
Nat Commun ; 15(1): 4735, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830857

RESUMEN

Magnetism in two-dimensional materials reveals phenomena distinct from bulk magnetic crystals, with sensitivity to charge doping and electric fields in monolayer and bilayer van der Waals magnet CrI3. Within the class of layered magnets, semiconducting CrSBr stands out by featuring stability under ambient conditions, correlating excitons with magnetic order and thus providing strong magnon-exciton coupling, and exhibiting peculiar magneto-optics of exciton-polaritons. Here, we demonstrate that both exciton and magnetic transitions in bilayer and trilayer CrSBr are sensitive to voltage-controlled field-effect charging, exhibiting bound exciton-charge complexes and doping-induced metamagnetic transitions. Moreover, we demonstrate how these unique properties enable optical probes of local magnetic order, visualizing magnetic domains of competing phases across metamagnetic transitions induced by magnetic field or electrostatic doping. Our work identifies few-layer CrSBr as a rich platform for exploring collaborative effects of charge, optical excitations, and magnetism.

7.
J Phys Chem C Nanomater Interfaces ; 128(22): 9270-9280, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38864003

RESUMEN

Transition metal thiophosphates (MPS3) are of great interest due to their layered structure and magnetic properties. Although HgPS3 may not exhibit magnetic properties, its uniqueness lies in its triclinic crystal structure and in the substantial mass of mercury, rendering it a compelling subject for exploration in terms of fundamental properties. In this work, we present comprehensive experimental and theoretical studies of the electronic band structure and optical properties for the HgPS3 crystal and mechanically exfoliated layers from a solid crystal. Based on absorption, reflectance and photoluminescence measurements supported by theoretical calculations, it is shown that the HgPS3 crystal has an indirect gap of 2.68 eV at room temperature. The direct gap is identified at the Γ point of the Brillouin zone (BZ) ≈ 50 meV above the indirect gap. The optical transition at the Γ point is forbidden due to selection rules, but the oscillator strength near the Γ point increases rapidly and therefore the direct optical transitions are visible in the reflectance spectra approximately at 60-120 meV above the absorption edge, across the temperature range of 40 to 300 K. The indirect nature of the bandgap and the selection rules for Γ point contribute to the absence of near-bandgap emission in HgPS3. Consequently, the photoluminescence spectrum is primarily governed by defect-related emission. The electronic band structure of HgPS3 undergoes significant changes when the crystal thickness is reduced to tri- and bilayers, resulting in a direct bandgap. Interestingly, in the monolayer regime, the fundamental transition is again indirect. The layered structure of the HgPS3 crystal was confirmed by scanning electron microscopy (SEM) and by mechanical exfoliation.

8.
Nature ; 632(8023): 69-74, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38926586

RESUMEN

Chiral superconductors, a unique class of unconventional superconductors in which the complex superconducting order parameter winds clockwise or anticlockwise in the momentum space1, represent a topologically non-trivial system with intrinsic time-reversal symmetry breaking (TRSB) and direct implications for topological quantum computing2,3. Intrinsic chiral superconductors are extremely rare, with only a few arguable examples, including UTe2, UPt3 and Sr2RuO4 (refs. 4-7). It has been suggested that chiral superconductivity may exist in non-centrosymmetric superconductors8,9, although such non-centrosymmetry is uncommon in typical solid-state superconductors. Alternatively, chiral molecules with neither mirror nor inversion symmetry have been widely investigated. We suggest that an incorporation of chiral molecules into conventional superconductor lattices could introduce non-centrosymmetry and help realize chiral superconductivity10. Here we explore unconventional superconductivity in chiral molecule intercalated TaS2 hybrid superlattices. Our studies reveal an exceptionally large in-plane upper critical field Bc2,|| well beyond the Pauli paramagnetic limit, a robust π-phase shift in Little-Parks measurements and a field-free superconducting diode effect (SDE). These experimental signatures of unconventional superconductivity suggest that the intriguing interplay between crystalline atomic layers and the self-assembled chiral molecular layers may lead to exotic topological materials. Our study highlights that the hybrid superlattices could lay a versatile path to artificial quantum materials by combining a vast library of layered crystals of rich physical properties with the nearly infinite variations of molecules of designable structural motifs and functional groups11.

9.
Angew Chem Int Ed Engl ; 63(30): e202405123, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38714495

RESUMEN

In this work, we investigate trion dynamics occurring at the heterojunction between organometallic molecules and a monolayer transition metal dichalcogenide (TMD) with transient electronic sum frequency generation (tr-ESFG) spectroscopy. By pumping at 2.4 eV with laser pulses, we have observed an ultrafast hole transfer, succeeded by the emergence of charge-transfer trions. This observation is facilitated by the cancellation of ground state bleach and stimulated emission signals due to their opposite phases, making tr-ESFG especially sensitive to the trion formation dynamics. The presence of charge-transfer trion at molecular functionalized TMD monolayers suggests the potential for engineering the local electronic structures and dynamics of specific locations on TMDs and offers a potential for transferring unique electronic attributes of TMD to the molecular layers.

10.
J Phys Chem C Nanomater Interfaces ; 128(16): 6780-6787, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38690535

RESUMEN

The properties of MXene flakes, a new class of two-dimensional materials, are strictly determined by their surface termination. The most common termination groups are oxygen-containing (=O or -OH) and fluorine (-F), and their relative ratio is closely related to flake stability and catalytic activity. The surface termination can vary significantly among MXene flakes depending on the preparation route and is commonly determined after flake preparation by using X-ray photoelectron spectroscopy (XPS). In this paper, as an alternative approach, we propose the combination of surface-enhanced Raman spectroscopy (SERS) and artificial neural networks (ANN) for the precise and reliable determination of MXene flakes' (Ti3C2Tx) surface chemistry. Ti3C2Tx flakes were independently prepared by three scientific groups and subsequently measured using three different Raman spectrometers, employing resonant excitation wavelengths. Manual analysis of the SERS spectra did not enable accurate determination of the flake surface termination. However, the combined SERS-ANN approach allowed us to determine the surface termination with a high accuracy. The reliability of the method was verified by using a series of independently prepared samples. We also paid special attention to how the results of the SERS-ANN method are affected by the flake stability and differences in the conditions of flake preparation and Raman measurements. This way, we have developed a universal technique that is independent of the above-mentioned parameters, providing the results with accuracy similar to XPS, but enhanced in terms of analysis time and simplicity.

11.
ACS Appl Mater Interfaces ; 16(23): 30196-30208, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38814245

RESUMEN

Rapid and reliable immunosensing is undoubtedly one of the priorities in the efficient management and combat against a pandemic, as society has experienced with the SARS-CoV-2 outbreak; simple and cost-effective sensing strategies are at the forefront of these efforts. In this regard, 2D-layered MXenes hold great potential for electrochemical biosensing due to their attractive physicochemical properties. Herein, we present a V2CTx MXene-based sensing layer as an integral part of a label-free immunosensor for sensitive and selective detection of the SARS-CoV-2 spike protein. The sensor was fabricated on a supporting screen-printed carbon electrode using Nafion as an immobilizing agent for MXene and glutaraldehyde, the latter enabling effective binding of protein A for further site-oriented immobilization of anti-SARS-CoV-2 antibodies. A thorough structural analysis of the sensor architecture was carried out, and several key parameters affecting the fabrication and analytical performance of the immunosensor were investigated and optimized. The immunosensor showed excellent electroanalytical performance in combination with an impedimetric approach and exhibited a low detection limit of only 45 fM SARS-CoV-2 spike protein. Its practical applicability was successfully demonstrated by measuring the spike protein in a spiked artificial nasopharyngeal fluid sample.


Asunto(s)
Técnicas Biosensibles , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/análisis , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/inmunología , Técnicas Biosensibles/métodos , Humanos , Inmunoensayo/métodos , Límite de Detección , COVID-19/diagnóstico , COVID-19/virología , Técnicas Electroquímicas/métodos , Electrodos
12.
Adv Mater ; 36(31): e2401534, 2024 Aug.
Artículo en Holandés | MEDLINE | ID: mdl-38795019

RESUMEN

The exploration of 1D magnetism, frequently portrayed as spin chains, constitutes an actively pursued research field that illuminates fundamental principles in many-body problems and applications in magnonics and spintronics. The inherent reduction in dimensionality often leads to robust spin fluctuations, impacting magnetic ordering and resulting in novel magnetic phenomena. Here, structural, magnetic, and optical properties of highly anisotropic 2D van der Waals antiferromagnets that uniquely host spin chains are explored. First-principle calculations reveal that the weakest interaction is interchain, leading to essentially 1D magnetic behavior in each layer. With the additional degree of freedom arising from its anisotropic structure, the structure is engineered by alloying, varying the 1D spin chain lengths using electron beam irradiation, or twisting for localized patterning, and spin textures are calculated, predicting robust stability of the antiferromagnetic ordering. Comparing with other spin chain magnets, these materials are anticipated to bring fresh perspectives on harvesting low-dimensional magnetism.

14.
Nat Commun ; 15(1): 4517, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806479

RESUMEN

Networks of nanowires, nanotubes, and nanosheets are important for many applications in printed electronics. However, the network conductivity and mobility are usually limited by the resistance between the particles, often referred to as the junction resistance. Minimising the junction resistance has proven to be challenging, partly because it is difficult to measure. Here, we develop a simple model for electrical conduction in networks of 1D or 2D nanomaterials that allows us to extract junction and nanoparticle resistances from particle-size-dependent DC network resistivity data. We find junction resistances in porous networks to scale with nanoparticle resistivity and vary from 5 Ω for silver nanosheets to 24 GΩ for WS2 nanosheets. Moreover, our model allows junction and nanoparticle resistances to be obtained simultaneously from AC impedance spectra of semiconducting nanosheet networks. Through our model, we use the impedance data to directly link the high mobility of aligned networks of electrochemically exfoliated MoS2 nanosheets (≈ 7 cm2 V-1 s-1) to low junction resistances of ∼2.3 MΩ. Temperature-dependent impedance measurements also allow us to comprehensively investigate transport mechanisms within the network and quantitatively differentiate intra-nanosheet phonon-limited bandlike transport from inter-nanosheet hopping.

15.
ACS Nano ; 18(21): 13458-13467, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38739873

RESUMEN

van der Waals (vdW) magnetic materials, such as Cr2Ge2Te6 (CGT), show promise for memory and logic applications. This is due to their broadly tunable magnetic properties and the presence of topological magnetic features such as skyrmionic bubbles. A systematic study of thickness and oxidation effects on magnetic domain structures is important for designing devices and vdW heterostructures for practical applications. Here, we investigate thickness effects on magnetic properties, magnetic domains, and bubbles in oxidation-controlled CGT crystals. We find that CGT exposed to ambient conditions for 5 days forms an oxide layer approximately 5 nm thick. This oxidation leads to a significant increase in the oxidation state of the Cr ions, indicating a change in local magnetic properties. This is supported by real-space magnetic texture imaging through Lorentz transmission electron microscopy. By comparing the thickness-dependent saturation field of oxidized and pristine crystals, we find that oxidation leads to a nonmagnetic surface layer that is thicker than the oxide layer alone. We also find that the stripe domain width and skyrmionic bubble size are strongly affected by the crystal thickness in pristine crystals. These findings underscore the impact of thickness and surface oxidation on the properties of CGT, such as saturation field and domain/skyrmionic bubble size, and suggest a pathway for manipulating magnetic properties through a controlled oxidation process.

16.
J Phys Chem Lett ; 15(23): 6010-6016, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38814350

RESUMEN

This study investigates the electronic band structure of chromium sulfur bromide (CrSBr) through comprehensive photoluminescence (PL) characterization. We clearly identify low-temperature optical transitions between two closely adjacent conduction-band states and two different valence-band states. The analysis on the PL data robustly unveils energy splittings, band gaps, and excitonic transitions across different thicknesses of CrSBr, from monolayer to bulk. Temperature-dependent PL measurements elucidate the stability of the band splitting below the Néel temperature, suggesting that magnons coupled with excitons are responsible for the symmetry breaking and brightening of the transitions from the secondary conduction band minimum (CBM2) to the global valence band maximum (VBM1). Collectively, these results not only reveal splitting in both the conduction and valence bands but also highlight a significant advance in our understanding of the interplay between the optical, electronic, and magnetic properties of antiferromagnetic two-dimensional van der Waals crystals.

17.
ACS Mater Lett ; 6(4): 1338-1346, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38576440

RESUMEN

The coupling of energy harvesting and energy storage discrete modules in a single architecture as a "two-in-one" concept is significant in off-grid energy storage devices. This approach can decrease the device size and the loss of energy transmission in common integrated energy harvesting and storage systems. This work systematically investigates the photoactive characteristics of niobium carbide MXene, Nb2CTx, in a photoenhanced hybrid zinc-ion capacitor (P-ZIC). The unique configuration of the Nb2CTx photoactive cathode absorbs light to charge the capacitor and enables it to operate continuously in the light-powered mode. The Nb2CTx-based P-ZIC shows a photodriven capacitance enhancement of over 60% at the scan rate of 10 mV s-1 under 50 mW cm-2 illumination with 435 nm wavelength. Furthermore, a photoenhanced specific capacitance of ∼27 F g-1, an impressive photocharging voltage response of 1.0 V, and capacitance retention of ∼85% (over 3000 cycles) are obtained.

18.
ACS Nano ; 18(15): 10397-10406, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38557003

RESUMEN

van der Waals heterostructures of two-dimensional materials have unveiled frontiers in condensed matter physics, unlocking unexplored possibilities in electronic and photonic device applications. However, the investigation of wide-gap, high-κ layered dielectrics for devices based on van der Waals structures has been relatively limited. In this work, we demonstrate an easily reproducible synthesis method for the rare-earth oxyhalide LaOBr, and we exfoliate it as a 2D layered material with a measured static dielectric constant of 9 and a wide bandgap of 5.3 eV. Furthermore, our research demonstrates that LaOBr can be used as a high-κ dielectric in van der Waals field-effect transistors with high performance and low interface defect concentrations. Additionally, it proves to be an attractive choice for electrical gating in excitonic devices based on 2D materials. Our work demonstrates the versatile realization and functionality of 2D systems with wide-gap and high-κ van der Waals dielectric environments.

19.
Adv Sci (Weinh) ; 11(24): e2308955, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38647404

RESUMEN

The adjustable structures and remarkable physicochemical properties of 2D monoelemental materials, such as silicene and germanene, have attracted significant attention in recent years. They can be transformed into silicane (SiH) and germanane (GeH) through covalent functionalization via hydrogen atom termination. However, synthesizing these materials with a scalable and low-cost fabrication process to achieve high-quality 2D SiH and GeH poses challenges. Herein, groundbreaking 2D SiH and GeH materials with varying compositions, specifically Si0.25Ge0.75H, Si0.50Ge0.50H, and Si0.75Ge0.25H, are prepared through a simple and efficient chemical exfoliation of their Zintl phases. These 2D materials offer significant advantages, including their large surface area, high mechanical flexibility, rapid electron mobility, and defect-rich loose-layered structures. Among these compositions, the Si0.50Ge0.50H electrode demonstrates the highest discharge capacity, reaching up to 1059 mAh g-1 after 60 cycles at a current density of 75 mA g-1. A comprehensive ex-situ electrochemical analysis is conducted to investigate the reaction mechanisms of lithiation/delithiation in Si0.50Ge0.50H. Subsequently, an initial assessment of the c-Li15(SixGe1- x)4 phase after lithiation and the a-Si0.50Ge0.50 phase after delithiation is presented. Hence, this study contributes crucial insights into the (de)lithiation reaction mechanisms within germanane-silicane alloys. Such understanding is pivotal for mastering promising materials that amalgamate the finest properties of silicon and germanium.

20.
ACS Appl Mater Interfaces ; 16(19): 24514-24524, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38687904

RESUMEN

Given the challenging task of constructing an efficient nitrogen reduction reaction (NRR) electrocatalyst with enhanced ambient condition performance, properties such as high specific surface area, fast electron transfer, and design of the catalyst surface constitute a group of key factors to be taken into consideration to guarantee outstanding catalytic performance and durability. Thereof, this work investigates the contribution of the 2D/2D heterojunction interface between MoS2 and reduced graphene oxide (rGO) on the electrocatalytic synthesis of NH3 in an alkaline media. The results revealed remarkable NRR performance on the MoS2@rGO 2D/2D hybrid electrocatalyst, characterized by a high NRR sensitivity (faradaic efficiency) of 34.7% with an NH3 yield rate of 3.98 ± 0.19 mg h-1 cm-2 at an overpotential of -0.3 V vs RHE in 0.1 M KOH solution. The hybrid electrocatalysts also exhibited selectivity for NH3 synthesis against the production of the hydrazine (N2H4) byproduct, hindrance of the competitive hydrogen evolution reaction (HER), and good durability over an operation period of 8 h. In hindsight, the study presented a low-cost and highly efficient catalyst design for achieving enhanced ammonia synthesis in alkaline media via the formation of defect-rich ultrathin MoS2@rGO nanostructures, consisting predominantly of an HER-hindering hexagonal 2H-MoS2 phase.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...