Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Arch Toxicol ; 91(2): 713-734, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27334372

RESUMEN

The present study describes physiologically based kinetic (PBK) models for the alkenylbenzene myristicin that were developed by extension of the PBK models for the structurally related alkenylbenzene safrole in rat and human. The newly developed myristicin models revealed that the formation of the proximate carcinogenic metabolite 1'-hydroxymyristicin in liver is at most 1.8 fold higher in rat than in human and limited for the ultimate carcinogenic metabolite 1'-sulfoxymyristicin to (2.8-4.0)-fold higher in human. In addition, a comparison was made between the relative importance of bioactivation for myristicin and safrole. Model predictions indicate that for these related compounds, the formation of the 1'-sulfoxy metabolites in rat and human liver is comparable with a difference of <2.2-fold over a wide dose range. The results from this PBK analysis support that risk assessment of myristicin may be based on the BMDL10 derived for safrole of 1.9-5.1 mg/kg bw per day. Using an estimated daily intake of myristicin of 0.0019 mg/kg bw per day resulting from the use of herbs and spices, this results in MOE values for myristicin that amount to 1000-2700, indicating a priority for risk management. The results obtained illustrate that PBK modeling provides insight into possible species differences in the metabolic activation of myristicin. Moreover, they provide an example of how PBK modeling can facilitate a read-across in risk assessment from a compound for which in vivo toxicity studies are available to a related compound for which tumor data are not reported, thus contributing to alternatives in animal testing.


Asunto(s)
Compuestos de Bencilo/farmacocinética , Dioxolanos/farmacocinética , Modelos Teóricos , Pirogalol/análogos & derivados , Activación Metabólica , Derivados de Alilbenceno , Animales , Carcinógenos/farmacocinética , Humanos , Inactivación Metabólica , Cinética , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Microsomas/efectos de los fármacos , Microsomas/metabolismo , Oxidación-Reducción , Pirogalol/farmacocinética , Ratas Sprague-Dawley , Medición de Riesgo/métodos , Safrol/farmacocinética
2.
Front Med (Lausanne) ; 3: 45, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27790617

RESUMEN

In an exercise designed to reduce animal use, we analyzed the results of rat subchronic toxicity studies from 289 pharmaceutical compounds with the aim to predict the tumor outcome of carcinogenicity studies in this species. The results were obtained from the assessment reports available at the Medicines Evaluation Board of the Netherlands for 289 pharmaceutical compounds that had been shown to be non-genotoxic. One hundred forty-three of the 239 compounds not inducing putative preneoplastic lesions in the subchronic study did not induce tumors in the carcinogenicity study [true negatives (TNs)], whereas 96 compounds were categorized as false negatives (FNs) because tumors were observed in the carcinogenicity study. Of the remaining 50 compounds, 31 showed preneoplastic lesions in the subchronic study and tumors in the carcinogenicity study [true positives (TPs)], and 19 only showed preneoplastic lesions in subchronic studies but no tumors in the carcinogenicity study [false positives (FPs)]. In addition, we then re-assessed the prediction of the tumor outcome by integrating the pharmacological properties of these compounds. These pharmacological properties were evaluated with respect to the presence or absence of a direct or indirect proliferative action. We found support for the absence of cellular proliferation for 204 compounds (TN). For 67 compounds, the presence of cellular hyperplasia as evidence for proliferative action could be found (TP). Therefore, this approach resulted in an ability to predict non-carcinogens at a success rate of 92% and the ability to detect carcinogens at 98%. The combined evaluation of pharmacological and histopathological endpoints eventually led to only 18 unknown outcomes (17 categorized as FN and 1 as FP), thereby enhancing both the negative and positive predictivity of an evaluation based upon histopathological evaluation only. The data show the added value of a consideration of the pharmacological properties of compounds in relation to potential class effects, both in the negative and positive direction. A high negative and a high positive predictivity will both result in waiving the need for conducting 2-year rat carcinogenicity studies, if this is accepted by Regulatory Authorities, which will save large numbers of animals and reduce drug development costs and time.

3.
Regul Toxicol Pharmacol ; 81: 242-249, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27614137

RESUMEN

Sub-chronic toxicity studies of 163 non-genotoxic chemicals were evaluated in order to predict the tumour outcome of 24-month rat carcinogenicity studies obtained from the EFSA and ToxRef databases. Hundred eleven of the 148 chemicals that did not induce putative preneoplastic lesions in the sub-chronic study also did not induce tumours in the carcinogenicity study (True Negatives). Cellular hypertrophy appeared to be an unreliable predictor of carcinogenicity. The negative predictivity, the measure of the compounds evaluated that did not show any putative preneoplastic lesion in de sub-chronic studies and were negative in the carcinogenicity studies, was 75%, whereas the sensitivity, a measure of the sub-chronic study to predict a positive carcinogenicity outcome was only 5%. The specificity, the accuracy of the sub-chronic study to correctly identify non-carcinogens was 90%. When the chemicals which induced tumours generally considered not relevant for humans (33 out of 37 False Negatives) are classified as True Negatives, the negative predictivity amounts to 97%. Overall, the results of this retrospective study support the concept that chemicals showing no histopathological risk factors for neoplasia in a sub-chronic study in rats may be considered non-carcinogenic and do not require further testing in a carcinogenicity study.


Asunto(s)
Pruebas de Carcinogenicidad , Carcinógenos/administración & dosificación , Carcinógenos/toxicidad , Bases de Datos Factuales , Neoplasias/inducido químicamente , Animales , Relación Dosis-Respuesta a Droga , Ratas , Estudios Retrospectivos , Factores de Riesgo , Factores de Tiempo
4.
Food Chem Toxicol ; 89: 138-50, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26826679

RESUMEN

The present study developed physiologically-based kinetic (PBK) models for the alkenylbenzene apiol in order to facilitate risk assessment based on read-across from the related alkenylbenzene safrole. Model predictions indicate that in rat liver the formation of the 1'-sulfoxy metabolite is about 3 times lower for apiol than for safrole. These data support that the lower confidence limit of the benchmark dose resulting in a 10% extra cancer incidence (BMDL10) that would be obtained in a rodent carcinogenicity study with apiol may be 3-fold higher for apiol than for safrole. These results enable a preliminary risk assessment for apiol, for which tumor data are not available, using a BMDL10 value of 3 times the BMDL10 for safrole. Based on an estimated BMDL10 for apiol of 5.7-15.3 mg/kg body wt per day and an estimated daily intake of 4 × 10(-5) mg/kg body wt per day, the margin of exposure (MOE) would amount to 140,000-385,000. This indicates a low priority for risk management. The present study shows how PBK modelling can contribute to the development of alternatives for animal testing, facilitating read-across from compounds for which in vivo toxicity studies on tumor formation are available to compounds for which these data are unavailable.


Asunto(s)
Dioxoles/toxicidad , Contaminación de Alimentos , Modelos Teóricos , Safrol/farmacocinética , Activación Metabólica , Animales , Humanos , Cinética , Petroselinum , Ratas
5.
Food Chem Toxicol ; 56: 483-90, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23376780

RESUMEN

This study presents a consumer and farmer safety evaluation on the use of four botanical pesticides in pepper berry crop protection. The pesticides evaluated include preparations from clove, tuba root, sweet flag and pyrethrum. Their safety evaluation was based on their active ingredients being eugenol, rotenone, ß-asarone and pyrethrins, respectively. Botanical pesticides from Acorus calamus are of possible concern because of the genotoxic and carcinogenic ingredient ß-asarone although estimated margins of exposure (MOE) for consumers indicate a low priority for risk management. For the other three botanical pesticides the margin of safety (MOS) between established acute reference doses and/or acceptable daily intake values and intake estimates for the consumer, resulting from their use as a botanical pesticide are not of safety concern, with the exception for levels of rotenone upon use of tuba root extracts on stored berries. Used levels of clove and pyrethrum as botanical pesticides in pepper berry crop production is not of safety concern for consumers or farmers, whereas for use of tuba root and sweet flag some risk factors were defined requiring further evaluation and/or risk management. It seems prudent to look for alternatives for use of sweet flag extracts containing ß-asarone.


Asunto(s)
Seguridad de Productos para el Consumidor , Productos Agrícolas , Exposición a Riesgos Ambientales/análisis , Control Biológico de Vectores/métodos , Plaguicidas/farmacología , Piper nigrum , Acorus/química , Derivados de Alilbenceno , Anisoles/toxicidad , Chrysanthemum cinerariifolium/química , Derris/química , Eugenol/toxicidad , Estudios de Evaluación como Asunto , Humanos , Raíces de Plantas/química , Piretrinas/toxicidad , Medición de Riesgo , Rotenona/toxicidad , Syzygium/química
6.
Chem Res Toxicol ; 25(11): 2352-67, 2012 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-22992039

RESUMEN

The present study describes physiologically based kinetic (PBK) models for the alkenylbenzene elemicin (3,4,5-trimethoxyallylbenzene) in rat and human, based on the PBK models previously developed for the structurally related alkenylbenzenes estragole, methyleugenol, and safrole. Using the newly developed models, the level of metabolic activation of elemicin in rat and human was predicted to obtain insight in species differences in the bioactivation of elemicin and read across to the other methoxy allylbenzenes, estragole and methyleugenol. Results reveal that the differences between rat and human in the formation of the proximate carcinogenic metabolite 1'-hydroxyelemicin and the ultimate carcinogenic metabolite 1'-sulfoxyelemicin are limited (<3.8-fold). In addition, a comparison was made between the relative importance of bioactivation for elemicin and that of estragole and methyleugenol. Model predictions indicate that compound differences in the formation of the 1'-sulfoxymetabolites are limited (<11-fold) in rat and human liver. The insights thus obtained were used to perform a risk assessment for elemicin using the margin of exposure (MOE) approach and read across to the other methoxy allylbenzene derivatives for which in vivo animal tumor data are available. This reveals that elemicin poses a lower priority for risk management as compared to its structurally related analogues estragole and methyleugenol. Altogether, the results obtained indicate that PBK modeling provides an important insight in the occurrence of species differences in the metabolic activation of elemicin. Moreover, they provide an example of how PBK modeling can facilitate a read across in risk assessment from compounds for which in vivo toxicity studies are available to a compound for which only limited toxicity data have been described, thus contributing to the development of alternatives for animal testing.


Asunto(s)
Modelos Biológicos , Pirogalol/análogos & derivados , Animales , Humanos , Cinética , Masculino , Microsomas/química , Microsomas/metabolismo , Estructura Molecular , Pirogalol/síntesis química , Pirogalol/química , Pirogalol/metabolismo , Ratas , Ratas Sprague-Dawley , Medición de Riesgo
7.
Mol Nutr Food Res ; 56(1): 30-52, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21823220

RESUMEN

Alkaloid-containing plants are an intrinsic part of the regular Western diet. The present paper summarizes the occurrence of alkaloids in the food chain, their mode of action and possible adverse effects including a safety assessment. Pyrrolizidine alkaloids are a reason for concern because of their bioactivation to reactive alkylating intermediates. Several quinolizidine alkaloids, ß-carboline alkaloids, ergot alkaloids and steroid alkaloids are active without bioactivation and mostly act as neurotoxins. Regulatory agencies are aware of the risks and have taken or are considering appropriate regulatory actions for most alkaloids. These vary from setting limits for the presence of a compound in feed, foods and beverages, trying to define safe upper limits, advising on a strategy aiming at restrictions in use, informing the public to be cautious or taking specific plant varieties from the market. For some alkaloids known to be present in the modern food chain, e.g., piperine, nicotine, theobromine, theophylline and tropane alkaloids risks coming from the human food chain are considered to be low if not negligible. Remarkably, for many alkaloids that are known constituents of the modern food chain and of possible concern, tolerable daily intake values have so far not been defined.


Asunto(s)
Alcaloides/efectos adversos , Dieta , Cadena Alimentaria , Alcaloides de Pirrolicidina/efectos adversos , Carbolinas/efectos adversos , Alcaloides de Claviceps/efectos adversos , Alimentos , Humanos , Neurotoxinas/efectos adversos , Ornitina/química , Piperidinas/química , Alcaloides de Pirrolicidina/química , Quinolizidinas/efectos adversos , Medición de Riesgo , Tropanos/efectos adversos
8.
Biochim Biophys Acta ; 1801(6): 646-54, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20176131

RESUMEN

Elevated plasma cholesterol, a well-known risk factor for cardiovascular diseases, is the result of the activity of many genes and their encoded proteins in a complex physiological network. We aim to develop a minimal kinetic computational model for predicting plasma cholesterol levels. To define the scope of this model, it is essential to discriminate between important and less important processes influencing plasma cholesterol levels. To this end, we performed a systematic review of mouse knockout strains and used the resulting dataset, named KOMDIP, for the identification of key genes that determine plasma cholesterol levels. Based on the described phenotype of mouse knockout models, 36 of the 120 evaluated genes were marked as key genes that have a pronounced effect on the plasma cholesterol concentration. The key genes include well-known genes, e.g., Apoe and Ldlr, as well as genes hardly linked to cholesterol metabolism so far, e.g., Plagl2 and Slc37a4. Based on the catalytic function of the genes, a minimal conceptual model was defined. A comparison with nine conceptual models from literature revealed that each of the individual published models is less complete than our model. Concluding, we have developed a conceptual model that can be used to develop a physiologically based kinetic model to quantitatively predict plasma cholesterol levels.


Asunto(s)
Colesterol/sangre , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Modelos Biológicos , Fenotipo
9.
Chemosphere ; 75(11): 1531-8, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19376559

RESUMEN

Within the REACH regulatory framework in the EU, quantitative structure-activity relationships (QSAR) models are expected to help reduce the number of animals used for experimental testing. The objective of this study was to develop QSAR models to describe the acute toxicity of organothiophosphate pesticides to aquatic organisms. Literature data sets for acute toxicity data of organothiophosphates to fish and one data set from experiments with 15 organothiophosphates on Daphniamagna performed in the present study were used to establish QSARs based on quantum mechanically derived molecular descriptors. The logarithm of the octanol/water partition coefficient, logK(ow,) the energy of the lowest unoccupied molecular orbital, E(lumo), and the energy of the highest occupied molecular orbital, E(homo) were used as descriptors. Additionally, it was investigated if toxicity data for the invertebrate D. magna could be used to build a QSAR model to predict toxicity to fish. Suitable QSAR models (0.80

Asunto(s)
Carpas/fisiología , Daphnia/efectos de los fármacos , Compuestos Organotiofosforados/toxicidad , Residuos de Plaguicidas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Modelos Biológicos , Modelos Químicos , Compuestos Organotiofosforados/química , Residuos de Plaguicidas/química , Relación Estructura-Actividad Cuantitativa , Pruebas de Toxicidad Aguda , Contaminantes Químicos del Agua/química
10.
Chem Res Toxicol ; 21(3): 739-45, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18254607

RESUMEN

Quantitative structure-activity relationship (QSAR) models are expected to play a crucial role in reducing the number of animals to be used for toxicity testing resulting from the adoption of the new European Union chemical control system called Registration, Evaluation, and Authorization of Chemicals (REACH). The objective of the present study was to generate in vitro acute toxicity data that could be used to develop a QSAR model to describe acute in vivo toxicity of chlorinated alkanes. Cytotoxicity of a series of chlorinated alkanes to Chinese hamster ovary (CHO) cells was observed at concentrations similar to those that have been shown previously to be toxic to fish. Strong correlations exist between the acute in vitro toxicity of the chlorinated alkanes and (i) hydrophobicity [modeled by the calculated log K ow (octanol-water partition coefficient); r (2) = 0.883 and r int (2) = 0.854] and (ii) in vivo acute toxicity to fish ( r (2) = 0.758). A QSAR model has been developed to predict in vivo acute toxicity to fish, based on the in vitro data and even on in silico log K ow data only. The developed QSAR model is applicable to chlorinated alkanes with up to 10 carbon atoms, up to eight chlorine atoms, and log K ow values lying within the range from 1.71 to 5.70. Out of the 100204 compounds on the European Inventory of Existing Chemicals (EINECS), our QSAR model covers 77 (0.1%) of them. Our findings demonstrate that in vitro experiments and even in silico calculations can replace animal experiments in the prediction of the acute toxicity of chlorinated alkanes.


Asunto(s)
Peces/fisiología , Hidrocarburos Clorados/química , Hidrocarburos Clorados/toxicidad , Algoritmos , Animales , Inteligencia Artificial , Células CHO , Supervivencia Celular/efectos de los fármacos , Fenómenos Químicos , Química Física , Cricetinae , Cricetulus , Valor Predictivo de las Pruebas , Relación Estructura-Actividad Cuantitativa , Sales de Tetrazolio , Tiazoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...