Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Dis Model Mech ; 17(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38299665

RESUMEN

Diversifying genotype-phenotype databases is essential to understanding complex trait and disease etiology across different environments and genetic ancestries. The rise of biobanks across the world is helping reveal the genetic and environmental architecture of multiple disease traits but the diversity they capture remains limited. To help close this gap, the Mexican Biobank (MXB) Project was recently generated, and has already revealed fine-scale genetic ancestries and demographic histories across the country, and their impact on trait-relevant genetic variation. This will help guide future genetic epidemiology and public health efforts, and has also improved polygenic prediction for several traits in Mexican populations compared with using data from other genome-wide association studies, such as the UK Biobank. The MXB illustrates the importance of transnational initiatives and funding calls that prioritize local leadership and capacity building to move towards inclusive genomic science.


Asunto(s)
Bancos de Muestras Biológicas , Estudio de Asociación del Genoma Completo , Creación de Capacidad , Fenotipo , Genómica
2.
Nat Rev Genet ; 25(3): 164, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38123710
3.
Nature ; 622(7984): 775-783, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37821706

RESUMEN

Latin America continues to be severely underrepresented in genomics research, and fine-scale genetic histories and complex trait architectures remain hidden owing to insufficient data1. To fill this gap, the Mexican Biobank project genotyped 6,057 individuals from 898 rural and urban localities across all 32 states in Mexico at a resolution of 1.8 million genome-wide markers with linked complex trait and disease information creating a valuable nationwide genotype-phenotype database. Here, using ancestry deconvolution and inference of identity-by-descent segments, we inferred ancestral population sizes across Mesoamerican regions over time, unravelling Indigenous, colonial and postcolonial demographic dynamics2-6. We observed variation in runs of homozygosity among genomic regions with different ancestries reflecting distinct demographic histories and, in turn, different distributions of rare deleterious variants. We conducted genome-wide association studies (GWAS) for 22 complex traits and found that several traits are better predicted using the Mexican Biobank GWAS compared to the UK Biobank GWAS7,8. We identified genetic and environmental factors associating with trait variation, such as the length of the genome in runs of homozygosity as a predictor for body mass index, triglycerides, glucose and height. This study provides insights into the genetic histories of individuals in Mexico and dissects their complex trait architectures, both crucial for making precision and preventive medicine initiatives accessible worldwide.


Asunto(s)
Bancos de Muestras Biológicas , Genética Médica , Genoma Humano , Genómica , Hispánicos o Latinos , Humanos , Glucemia/genética , Glucemia/metabolismo , Estatura/genética , Índice de Masa Corporal , Interacción Gen-Ambiente , Marcadores Genéticos/genética , Estudio de Asociación del Genoma Completo , Hispánicos o Latinos/clasificación , Hispánicos o Latinos/genética , Homocigoto , México , Fenotipo , Triglicéridos/sangre , Triglicéridos/genética , Reino Unido , Genoma Humano/genética
4.
Perspect Biol Med ; 66(2): 225-248, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37755714

RESUMEN

A wide range of research uses patterns of genetic variation to infer genetic similarity between individuals, typically referred to as genetic ancestry. This research includes inference of human demographic history, understanding the genetic architecture of traits, and predicting disease risk. Researchers are not just structuring an intellectual inquiry when using genetic ancestry, they are also creating analytical frameworks with broader societal ramifications. This essay presents an ethics framework in the spirit of virtue ethics for these researchers: rather than focus on rule following, the framework is designed to build researchers' capacities to react to the ethical dimensions of their work. The authors identify one overarching principle of intellectual freedom and responsibility, noting that freedom in all its guises comes with responsibility, and they identify and define four principles that collectively uphold researchers' intellectual responsibility: truthfulness, justice and fairness, anti-racism, and public beneficence. Researchers should bring their practices into alignment with these principles, and to aid this, the authors name three common ways research practices infringe these principles, suggest a step-by-step process for aligning research choices with the principles, provide rules of thumb for achieving alignment, and give a worked case. The essay concludes by identifying support needed by researchers to act in accord with the proposed framework.

5.
Science ; 381(6655): eadf8009, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37471560

RESUMEN

The human skeletal form underlies bipedalism, but the genetic basis of skeletal proportions (SPs) is not well characterized. We applied deep-learning models to 31,221 x-rays from the UK Biobank to extract a comprehensive set of SPs, which were associated with 145 independent loci genome-wide. Structural equation modeling suggested that limb proportions exhibited strong genetic sharing but were independent of width and torso proportions. Polygenic score analysis identified specific associations between osteoarthritis and hip and knee SPs. In contrast to other traits, SP loci were enriched in human accelerated regions and in regulatory elements of genes that are differentially expressed between humans and great apes. Combined, our work identifies specific genetic variants that affect the skeletal form and ties a major evolutionary facet of human anatomical change to pathogenesis.


Asunto(s)
Evolución Molecular , Genoma Humano , Herencia Multifactorial , Esqueleto , Humanos , Estudio de Asociación del Genoma Completo , Fenotipo , Polimorfismo de Nucleótido Simple , Esqueleto/anatomía & histología , Esqueleto/crecimiento & desarrollo , Masculino , Femenino
6.
Front Genet ; 14: 1044555, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36755575

RESUMEN

Background: Ancestry is often viewed as a more objective and less objectionable population descriptor than race or ethnicity. Perhaps reflecting this, usage of the term "ancestry" is rapidly growing in genetics research, with ancestry groups referenced in many situations. The appropriate usage of population descriptors in genetics research is an ongoing source of debate. Sound normative guidance should rest on an empirical understanding of current usage; in the case of ancestry, questions about how researchers use the concept, and what they mean by it, remain unanswered. Methods: Systematic literature analysis of 205 articles at least tangentially related to human health from diverse disciplines that use the concept of ancestry, and semi-structured interviews with 44 lead authors of some of those articles. Results: Ancestry is relied on to structure research questions and key methodological approaches. Yet researchers struggle to define it, and/or offer diverse definitions. For some ancestry is a genetic concept, but for many-including geneticists-ancestry is only tangentially related to genetics. For some interviewees, ancestry is explicitly equated to ethnicity; for others it is explicitly distanced from it. Ancestry is operationalized using multiple data types (including genetic variation and self-reported identities), though for a large fraction of articles (26%) it is impossible to tell which data types were used. Across the literature and interviews there is no consistent understanding of how ancestry relates to genetic concepts (including genetic ancestry and population structure), nor how these genetic concepts relate to each other. Beyond this conceptual confusion, practices related to summarizing patterns of genetic variation often rest on uninterrogated conventions. Continental labels are by far the most common type of label applied to ancestry groups. We observed many instances of slippage between reference to ancestry groups and racial groups. Conclusion: Ancestry is in practice a highly ambiguous concept, and far from an objective counterpart to race or ethnicity. It is not uniquely a "biological" construct, and it does not represent a "safe haven" for researchers seeking to avoid evoking race or ethnicity in their work. Distinguishing genetic ancestry from ancestry more broadly will be a necessary part of providing conceptual clarity.

7.
bioRxiv ; 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36712136

RESUMEN

The human skeletal form underlies our ability to walk on two legs, but unlike standing height, the genetic basis of limb lengths and skeletal proportions is less well understood. Here we applied a deep learning model to 31,221 whole body dual-energy X-ray absorptiometry (DXA) images from the UK Biobank (UKB) to extract 23 different image-derived phenotypes (IDPs) that include all long bone lengths as well as hip and shoulder width, which we analyzed while controlling for height. All skeletal proportions are highly heritable (∻40-50%), and genome-wide association studies (GWAS) of these traits identified 179 independent loci, of which 102 loci were not associated with height. These loci are enriched in genes regulating skeletal development as well as associated with rare human skeletal diseases and abnormal mouse skeletal phenotypes. Genetic correlation and genomic structural equation modeling indicated that limb proportions exhibited strong genetic sharing but were genetically independent of width and torso proportions. Phenotypic and polygenic risk score analyses identified specific associations between osteoarthritis (OA) of the hip and knee, the leading causes of adult disability in the United States, and skeletal proportions of the corresponding regions. We also found genomic evidence of evolutionary change in arm-to-leg and hip-width proportions in humans consistent with striking anatomical changes in these skeletal proportions in the hominin fossil record. In contrast to cardiovascular, auto-immune, metabolic, and other categories of traits, loci associated with these skeletal proportions are significantly enriched in human accelerated regions (HARs), and regulatory elements of genes differentially expressed through development between humans and the great apes. Taken together, our work validates the use of deep learning models on DXA images to identify novel and specific genetic variants affecting the human skeletal form and ties a major evolutionary facet of human anatomical change to pathogenesis.

10.
Genome Biol Evol ; 13(12)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34894236

RESUMEN

The spatial distribution of genetic variants is jointly determined by geography, past demographic processes, natural selection, and its interplay with environmental variation. A fraction of these genetic variants are "causal alleles" that affect the manifestation of a complex trait. The effect exerted by these causal alleles on complex traits can be independent or dependent on the environment. Understanding the evolutionary processes that shape the spatial structure of causal alleles is key to comprehend the spatial distribution of complex traits. Natural selection, past population size changes, range expansions, consanguinity, assortative mating, archaic introgression, admixture, and the environment can alter the frequencies, effect sizes, and heterozygosities of causal alleles. This provides a genetic axis along which complex traits can vary. However, complex traits also vary along biogeographical and sociocultural axes which are often correlated with genetic axes in complex ways. The purpose of this review is to consider these genetic and environmental axes in concert and examine the ways they can help us decipher the variation in complex traits that is visible in humans today. This initiative necessarily implies a discussion of populations, traits, the ability to infer and interpret "genetic" components of complex traits, and how these have been impacted by adaptive events. In this review, we provide a history-aware discussion on these topics using both the recent and more distant past of our academic discipline and its relevant contexts.


Asunto(s)
Variación Genética , Selección Genética , Alelos , Geografía , Humanos , Fenotipo
11.
Front Genet ; 12: 719791, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35046991

RESUMEN

Current Genome-Wide Association Studies (GWAS) rely on genotype imputation to increase statistical power, improve fine-mapping of association signals, and facilitate meta-analyses. Due to the complex demographic history of Latin America and the lack of balanced representation of Native American genomes in current imputation panels, the discovery of locally relevant disease variants is likely to be missed, limiting the scope and impact of biomedical research in these populations. Therefore, the necessity of better diversity representation in genomic databases is a scientific imperative. Here, we expand the 1,000 Genomes reference panel (1KGP) with 134 Native American genomes (1KGP + NAT) to assess imputation performance in Latin American individuals of mixed ancestry. Our panel increased the number of SNPs above the GWAS quality threshold, thus improving statistical power for association studies in the region. It also increased imputation accuracy, particularly in low-frequency variants segregating in Native American ancestry tracts. The improvement is subtle but consistent across countries and proportional to the number of genomes added from local source populations. To project the potential improvement with a higher number of reference genomes, we performed simulations and found that at least 3,000 Native American genomes are needed to equal the imputation performance of variants in European ancestry tracts. This reflects the concerning imbalance of diversity in current references and highlights the contribution of our work to reducing it while complementing efforts to improve global equity in genomic research.

12.
Mol Biol Evol ; 37(2): 417-428, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31589312

RESUMEN

Identifying genetic variation in bacteria that has been shaped by ecological differences remains an important challenge. For recombining bacteria, the sign and strength of linkage provide a unique lens into ongoing selection. We show that derived alleles <300 bp apart in Neisseria gonorrhoeae exhibit more coupling linkage than repulsion linkage, a pattern that cannot be explained by limited recombination or neutrality as these couplings are significantly stronger for nonsynonymous alleles than synonymous alleles. This general pattern is driven by a small fraction of highly diverse genes, many of which exhibit evidence of interspecies horizontal gene transfer and an excess of intermediate frequency alleles. Extensive simulations show that two distinct forms of positive selection can create these patterns of genetic variation: directional selection on horizontally transferred alleles or balancing selection that maintains distinct haplotypes in the presence of recombination. Our results establish a framework for identifying patterns of selection in fine-scale haplotype structure that indicate specific ecological processes in species that recombine with distantly related lineages or possess coexisting adaptive haplotypes.


Asunto(s)
Variación Genética , Neisseria gonorrhoeae/genética , Análisis de Secuencia de ADN/métodos , Evolución Molecular , Frecuencia de los Genes , Transferencia de Gen Horizontal , Haplotipos , Desequilibrio de Ligamiento , Recombinación Genética , Selección Genética
13.
Elife ; 82019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30895926

RESUMEN

Genetic predictions of height differ among human populations and these differences have been interpreted as evidence of polygenic adaptation. These differences were first detected using SNPs genome-wide significantly associated with height, and shown to grow stronger when large numbers of sub-significant SNPs were included, leading to excitement about the prospect of analyzing large fractions of the genome to detect polygenic adaptation for multiple traits. Previous studies of height have been based on SNP effect size measurements in the GIANT Consortium meta-analysis. Here we repeat the analyses in the UK Biobank, a much more homogeneously designed study. We show that polygenic adaptation signals based on large numbers of SNPs below genome-wide significance are extremely sensitive to biases due to uncorrected population stratification. More generally, our results imply that typical constructions of polygenic scores are sensitive to population stratification and that population-level differences should be interpreted with caution. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).


Asunto(s)
Estatura , Biología Computacional/métodos , Estudio de Asociación del Genoma Completo/métodos , Herencia Multifactorial , Adaptación Biológica , Bioestadística , Bases de Datos Factuales , Humanos , Filogenia , Polimorfismo de Nucleótido Simple , Reino Unido
14.
Science ; 356(6337): 539-542, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28473589

RESUMEN

Negative selection against deleterious alleles produced by mutation influences within-population variation as the most pervasive form of natural selection. However, it is not known whether deleterious alleles affect fitness independently, so that cumulative fitness loss depends exponentially on the number of deleterious alleles, or synergistically, so that each additional deleterious allele results in a larger decrease in relative fitness. Negative selection with synergistic epistasis should produce negative linkage disequilibrium between deleterious alleles and, therefore, an underdispersed distribution of the number of deleterious alleles in the genome. Indeed, we detected underdispersion of the number of rare loss-of-function alleles in eight independent data sets from human and fly populations. Thus, selection against rare protein-disrupting alleles is characterized by synergistic epistasis, which may explain how human and fly populations persist despite high genomic mutation rates.


Asunto(s)
Drosophila melanogaster/genética , Epistasis Genética , Genoma Humano , Genoma de los Insectos , Tasa de Mutación , Selección Genética , Alelos , Animales , Aptitud Genética , Humanos , Desequilibrio de Ligamiento , Mutación Missense
15.
Nat Genet ; 48(3): 231-237, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26808112

RESUMEN

An unexpectedly large number of human autosomal genes are subject to monoallelic expression (MAE). Our analysis of 4,227 such genes uncovers surprisingly high genetic variation across human populations. This increased diversity is unlikely to reflect relaxed purifying selection. Remarkably, MAE genes exhibit an elevated recombination rate and an increased density of hypermutable sequence contexts. However, these factors do not fully account for the increased diversity. We find that the elevated nucleotide diversity of MAE genes is also associated with greater allelic age: variants in these genes tend to be older and are enriched in polymorphisms shared by Neanderthals and chimpanzees. Both synonymous and nonsynonymous alleles of MAE genes have elevated average population frequencies. We also observed strong enrichment of the MAE signature among genes reported to evolve under balancing selection. We propose that an important biological function of widespread MAE might be the generation of cell-to-cell heterogeneity; the increased genetic variation contributes to this heterogeneity.


Asunto(s)
Regulación de la Expresión Génica , Variación Genética , Alelos , Animales , Genética de Población , Humanos , Hombre de Neandertal/genética , Pan troglodytes/genética
16.
Nat Mater ; 10(3): 243-51, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21336265

RESUMEN

Vaccines based on recombinant proteins avoid the toxicity and antivector immunity associated with live vaccine (for example, viral) vectors, but their immunogenicity is poor, particularly for CD8(+) T-cell responses. Synthetic particles carrying antigens and adjuvant molecules have been developed to enhance subunit vaccines, but in general these materials have failed to elicit CD8(+) T-cell responses comparable to those for live vectors in preclinical animal models. Here, we describe interbilayer-crosslinked multilamellar vesicles formed by crosslinking headgroups of adjacent lipid bilayers within multilamellar vesicles. Interbilayer-crosslinked vesicles stably entrapped protein antigens in the vesicle core and lipid-based immunostimulatory molecules in the vesicle walls under extracellular conditions, but exhibited rapid release in the presence of endolysosomal lipases. We found that these antigen/adjuvant-carrying vesicles form an extremely potent whole-protein vaccine, eliciting endogenous T-cell and antibody responses comparable to those for the strongest vaccine vectors. These materials should enable a range of subunit vaccines and provide new possibilities for therapeutic protein delivery.


Asunto(s)
Inmunidad Celular , Inmunidad Humoral , Liposomas/química , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología , Adyuvantes Inmunológicos/química , Animales , Portadores de Fármacos , Diseño de Fármacos , Memoria Inmunológica , Membrana Dobles de Lípidos/química , Liposomas/inmunología , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ovalbúmina/inmunología , Vacunas Sintéticas/química , Vacunas Virales/química , Vacunas Virales/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA