Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38826335

RESUMEN

Fusarium oxysporum is a cross-kingdom pathogen. While some strains cause disseminated fusariosis and blinding corneal infections in humans, others are responsible for devastating vascular wilt diseases in plants. To better understand the distinct adaptations of F. oxysporum to animal or plant hosts, we conducted a comparative phenotypic and genetic analysis of two strains: MRL8996 (isolated from a keratitis patient) and Fol4287 (isolated from a wilted tomato [Solanum lycopersicum]). In vivo infection of mouse corneas and tomato plants revealed that, while both strains cause symptoms in both hosts, MRL8996 caused more severe corneal ulceration and perforation in mice, whereas Fol4287 induced more pronounced wilting symptoms in tomato. In vitro assays using abiotic stress treatments revealed that the human pathogen MRL8996 was better adapted to elevated temperatures, whereas the plant pathogen Fol4287 was more tolerant of osmotic and cell wall stresses. Both strains displayed broad resistance to antifungal treatment, with MRL8996 exhibiting the paradoxical effect of increased tolerance to higher concentrations of the antifungal caspofungin. We identified a set of accessory chromosomes (ACs) and protein-encoding genes with distinct transposon profiles and functions, respectively, between MRL8996 and Fol4287. Interestingly, ACs from both genomes also encode proteins with shared functions, such as chromatin remodeling and post-translational protein modifications. Our phenotypic assays and comparative genomics analyses lay the foundation for future studies correlating genotype with phenotype and for developing targeted antifungals for agricultural and clinical uses.

2.
Genes (Basel) ; 12(2)2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557410

RESUMEN

Transposable elements (TEs) are mobile elements capable of introducing genetic changes rapidly. Their importance has been documented in many biological processes, such as introducing genetic instability, altering patterns of gene expression, and accelerating genome evolution. Increasing appreciation of TEs has resulted in a growing number of bioinformatics software to identify insertion events. However, the application of existing tools is limited by either narrow-focused design of the package, too many dependencies on other tools, or prior knowledge required as input files that may not be readily available to all users. Here, we reported a simple pipeline, TEfinder, developed for the detection of new TE insertions with minimal software and input file dependencies. The external software requirements are BEDTools, SAMtools, and Picard. Necessary input files include the reference genome sequence in FASTA format, an alignment file from paired-end reads, existing TEs in GTF format, and a text file of TE names. We tested TEfinder among several evolving populations of Fusarium oxysporum generated through a short-term adaptation study. Our results demonstrate that this easy-to-use tool can effectively detect new TE insertion events, making it accessible and practical for TE analysis.


Asunto(s)
Biología Computacional , Elementos Transponibles de ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento/estadística & datos numéricos , Programas Informáticos , Animales , Análisis de Secuencia de ADN/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...