Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Trends Immunol ; 45(5): 371-380, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38653601

RESUMEN

Peripheral sensory neurons recognize diverse noxious stimuli, including microbial products and allergens traditionally thought to be targets of the mammalian immune system. Activation of sensory neurons by these stimuli leads to pain and itch responses as well as the release of neuropeptides that interact with their cognate receptors expressed on immune cells, such as dendritic cells (DCs). Neuronal control of immune cell function through neuropeptide release not only affects local inflammatory responses but can impact adaptive immune responses through downstream effects on T cell priming. Numerous neuropeptide receptors are expressed by DCs but only a few have been characterized, presenting opportunities for further investigation of the pathways by which cutaneous neuroimmune interactions modulate host immunity.


Asunto(s)
Células Receptoras Sensoriales , Piel , Humanos , Animales , Células Receptoras Sensoriales/inmunología , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/fisiología , Piel/inmunología , Neuropéptidos/metabolismo , Neuropéptidos/inmunología , Células Dendríticas/inmunología , Neuroinmunomodulación , Receptores de Neuropéptido/metabolismo , Receptores de Neuropéptido/inmunología
2.
Allergy ; 78(5): 1148-1168, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36794967

RESUMEN

Tremendous progress in the last few years has been made to explain how seemingly harmless environmental proteins from different origins can induce potent Th2-biased inflammatory responses. Convergent findings have shown the key roles of allergens displaying proteolytic activity in the initiation and progression of the allergic response. Through their propensity to activate IgE-independent inflammatory pathways, certain allergenic proteases are now considered as initiators for sensitization to themselves and to non-protease allergens. The protease allergens degrade junctional proteins of keratinocytes or airway epithelium to facilitate allergen delivery across the epithelial barrier and their subsequent uptake by antigen-presenting cells. Epithelial injuries mediated by these proteases together with their sensing by protease-activated receptors (PARs) elicit potent inflammatory responses resulting in the release of pro-Th2 cytokines (IL-6, IL-25, IL-1ß, TSLP) and danger-associated molecular patterns (DAMPs; IL-33, ATP, uric acid). Recently, protease allergens were shown to cleave the protease sensor domain of IL-33 to produce a super-active form of the alarmin. At the same time, proteolytic cleavage of fibrinogen can trigger TLR4 signaling, and cleavage of various cell surface receptors further shape the Th2 polarization. Remarkably, the sensing of protease allergens by nociceptive neurons can represent a primary step in the development of the allergic response. The goal of this review is to highlight the multiple innate immune mechanisms triggered by protease allergens that converge to initiate the allergic response.


Asunto(s)
Alérgenos , Hipersensibilidad , Humanos , Péptido Hidrolasas , Interleucina-33 , Inflamación , Células Th2
3.
Mol Pain ; 19: 17448069221148351, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36526437

RESUMEN

Sensory neuron hyperexcitability is a critical driver of pathological pain and can result from axon damage, inflammation, or neuronal stress. G-protein coupled receptor signaling can induce pain amplification by modulating the activation of Trp-family ionotropic receptors and voltage-gated ion channels. Here, we sought to use calcium imaging to identify novel inhibitors of the intracellular pathways that mediate sensory neuron sensitization and lead to hyperexcitability. We identified a novel stimulus cocktail, consisting of the SSTR2 agonist L-054,264 and the S1PR3 agonist CYM5541, that elicits calcium responses in mouse primary sensory neurons in vitro as well as pain and thermal hypersensitivity in mice in vivo. We screened a library of 906 bioactive compounds and identified 24 hits that reduced calcium flux elicited by L-054,264/CYM5541. Among these hits, silymarin, a natural product derived from milk thistle, strongly reduced activation by the stimulation cocktail, as well as by a distinct inflammatory cocktail containing bradykinin and prostaglandin E2. Silymarin had no effect on sensory neuron excitability at baseline, but reduced calcium flux via Orai channels and downstream mediators of phospholipase C signaling. In vivo, silymarin pretreatment blocked development of adjuvant-mediated thermal hypersensitivity, indicating potential use as an anti-inflammatory analgesic.


Asunto(s)
Nociceptores , Silimarina , Ratones , Animales , Nociceptores/metabolismo , Calcio/metabolismo , Silimarina/metabolismo , Silimarina/farmacología , Dolor/metabolismo , Células Receptoras Sensoriales/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Ganglios Espinales/metabolismo
4.
Immunohorizons ; 6(8): 569-580, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35926975

RESUMEN

Type 2 immunity plays an important role in host defense against helminths and toxins while driving allergic diseases. Despite progress in understanding the biology of type 2 immunity, the fundamental mechanisms regulating the type 2 immune module remain unclear. In contrast with structural recognition used by pattern recognition receptors, type 2 immunogens are sensed through their functional properties. Functional recognition theory has arisen as the paradigm for the initiation of type 2 immunity. However, the vast array of structurally unrelated type 2 immunogens makes it challenging to advance our understanding of type 2 immunity. In this article, we review functional recognition theory and organize type 2 immunogens into distinct classes based on how they fit into the concept of functional recognition. Lastly, we discuss areas of uncertainty in functional recognition theory with the goal of providing a framework to further define the logic of type 2 immunity in host protection and immunopathology.


Asunto(s)
Helmintos , Inmunidad Innata , Animales , Receptores de Reconocimiento de Patrones , Incertidumbre
5.
Curr Opin Immunol ; 74: 85-91, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34808584

RESUMEN

Dendritic cells of the innate immune system and sensory neurons of the peripheral nervous system are embedded in barrier tissues and gather information about an organisms' environment. While the mechanisms by which dendritic cells recognize and initiate adaptive immune responses to pathogens is well defined, how they sense allergens is poorly understood. Indeed, allergens induce dendritic cell maturation and migration in vivo, but not in vitro. How are adaptive immune responses to allergens initiated if dendritic cells do not directly sense allergens? Sensory neurons release neuropeptides within minutes of allergen exposure. Recent evidence demonstrated that while neuropeptides modify dendritic cell function during pathogen responses, they are required for dendritic cell function during allergic responses. These emerging studies suggest that sensory neurons do not just pass information along to the central nervous system, but also to dendritic cells, particularly during the initiation of adaptive immunity to allergens.


Asunto(s)
Hipersensibilidad , Neuropéptidos , Alérgenos , Células Dendríticas , Humanos , Inmunidad Innata , Células Receptoras Sensoriales
7.
Immunity ; 54(7): 1374-1376, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34260885

RESUMEN

In a recent issue of Nature, Hoeffel et al. describe a novel pathway of sterile tissue repair utilizing a mouse model of sunburn. This wound healing pathway is coordinated by sensory neuron-derived TAFA4 that induces IL-10 production from Tim4+ dermal macrophages to prevent sustained inflammation and the emergence of tissue fibrosis.


Asunto(s)
Células Receptoras Sensoriales/patología , Quemadura Solar/patología , Cicatrización de Heridas/fisiología , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Fibrosis/metabolismo , Fibrosis/patología , Inflamación/metabolismo , Inflamación/patología , Interleucina-10/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Transducción de Señal/fisiología , Piel/metabolismo , Piel/patología , Quemadura Solar/metabolismo
8.
Immunol Cell Biol ; 99(9): 936-948, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34115905

RESUMEN

The immune system defends the body from infectious and non-infectious threats. Distinct recognition strategies have evolved to generate antigen-specific immunity against pathogens or toxins versus antigen-independent tissue repair. Structural recognition, or the sensing of conserved motifs, guides the immune response to viruses, bacteria, fungi, and unicellular parasites. Functional recognition, which is sensing that is based on the activities of an input, guides antigen-independent tissue healing and antigen-specific Type 2 immunity to toxins, allergens, and helminth parasites. Damage-associated molecular patterns (DAMPs), released from damaged and dying cells, permit functional recognition by immune cells. However, the DAMP paradigm alone does not explain how functional recognition can lead to such disparate immune responses, namely wound healing and Type 2 immunity. Recent work established that sensory neurons release neuropeptides in response to a variety of toxins and allergens. These neuropeptides act on local innate immune cells, stimulating or inhibiting their activities. By integrating our knowledge on DAMP function with new information on the role of neuropeptides in innate immune activation in Type 2 immunity, we describe a decision tree model of functional recognition. In this model, neuropeptides complement or antagonize DAMPs to guide the development of antigen-specific Type 2 immunity through the activation of innate immune cells. We discuss why this decision tree system evolved and its implications to allergic diseases.


Asunto(s)
Hipersensibilidad , Alérgenos , Árboles de Decisión , Humanos , Sistema Inmunológico , Inmunidad , Inmunidad Innata
9.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33753496

RESUMEN

Acute and chronic itch are burdensome manifestations of skin pathologies including allergic skin diseases and atopic dermatitis, but the underlying molecular mechanisms are not well understood. Cysteinyl leukotrienes (CysLTs), comprising LTC4, LTD4, and LTE4, are produced by immune cells during type 2 inflammation. Here, we uncover a role for LTC4 and its signaling through the CysLT receptor 2 (CysLT2R) in itch. Cysltr2 transcript is highly expressed in dorsal root ganglia (DRG) neurons linked to itch in mice. We also detected CYSLTR2 in a broad population of human DRG neurons. Injection of leukotriene C4 (LTC4) or its nonhydrolyzable form NMLTC4, but neither LTD4 nor LTE4, induced dose-dependent itch but not pain behaviors in mice. LTC4-mediated itch differed in bout duration and kinetics from pruritogens histamine, compound 48/80, and chloroquine. NMLTC4-induced itch was abrogated in mice deficient for Cysltr2 or when deficiency was restricted to radioresistant cells. Itch was unaffected in mice deficient for Cysltr1, Trpv1, or mast cells (WSh mice). CysLT2R played a role in itch in the MC903 mouse model of chronic itch and dermatitis, but not in models of dry skin or compound 48/80- or Alternaria-induced itch. In MC903-treated mice, CysLT levels increased in skin over time, and Cysltr2-/- mice showed decreased itch in the chronic phase of inflammation. Collectively, our study reveals that LTC4 acts through CysLT2R as its physiological receptor to induce itch, and CysLT2R contributes to itch in a model of dermatitis. Therefore, targeting CysLT signaling may be a promising approach to treat inflammatory itch.


Asunto(s)
Dermatitis Atópica/inmunología , Leucotrieno C4/metabolismo , Prurito/inmunología , Receptores de Leucotrienos/metabolismo , Piel/inervación , Animales , Enfermedad Crónica , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/complicaciones , Dermatitis Atópica/patología , Modelos Animales de Enfermedad , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Humanos , Ratones , Ratones Noqueados , Prurito/patología , Receptores de Leucotrienos/genética , Células Receptoras Sensoriales/metabolismo , Transducción de Señal/inmunología , Piel/patología
10.
STAR Protoc ; 2(1): 100333, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33615276

RESUMEN

In this protocol, we provide step-by-step instructions for dissection and culture of primary murine dorsal root ganglia (DRG), which provide an opportunity to study the functional properties of peripheral sensory neurons in vitro. Further, we describe the analysis of neuropeptide release by ELISA as a possible downstream application. In addition, isolated DRGs can be used directly for immunofluorescence, flow cytometry, RNA sequencing or proteomic approaches, electrophysiology, and calcium imaging. For complete details on the use and execution of this protocol, please refer to Perner et al. (2020).


Asunto(s)
Ganglios Espinales/metabolismo , Neuropéptidos/metabolismo , Proteómica , Células Receptoras Sensoriales/metabolismo , Animales , Ganglios Espinales/citología , Ratones , Células Receptoras Sensoriales/citología , Técnicas de Cultivo de Tejidos
11.
Cell Rep ; 33(7): 108381, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33207188

RESUMEN

Central to anti-tumor immunity are dendritic cells (DCs), which stimulate long-lived protective T cell responses. Recent studies have demonstrated that DCs can achieve a state of hyperactivation, which is associated with inflammasome activities within living cells. Herein, we report that hyperactive DCs have an enhanced ability to migrate to draining lymph nodes and stimulate potent cytotoxic T lymphocyte (CTL) responses. This enhanced migratory activity is dependent on the chemokine receptor CCR7 and is associated with a unique transcriptional program that is not observed in conventionally activated or pyroptotic DCs. We show that hyperactivating stimuli are uniquely capable of inducing durable CTL-mediated anti-tumor immunity against tumors that are sensitive or resistant to PD-1 inhibition. These protective responses are intrinsic to the cDC1 subset of DCs, depend on the inflammasome-dependent cytokine IL-1ß, and enable tumor lysates to serve as immunogens. If these activities are verified in humans, hyperactive DCs may impact immunotherapy.


Asunto(s)
Inmunidad Adaptativa/inmunología , Células Dendríticas/inmunología , Inflamasomas/inmunología , Animales , Línea Celular , Línea Celular Tumoral , Movimiento Celular/fisiología , Femenino , Humanos , Inmunoterapia , Ganglios Linfáticos/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Receptores CCR7/inmunología , Receptores CCR7/metabolismo , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismo
12.
Immunity ; 53(5): 1063-1077.e7, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33098765

RESUMEN

Dendritic cells (DCs) of the cDC2 lineage initiate allergic immunity and in the dermis are marked by their expression of CD301b. CD301b+ dermal DCs respond to allergens encountered in vivo, but not in vitro. This suggests that another cell in the dermis may sense allergens and relay that information to activate and induce the migration of CD301b+ DCs to the draining lymph node (dLN). Using a model of cutaneous allergen exposure, we show that allergens directly activated TRPV1+ sensory neurons leading to itch and pain behaviors. Allergen-activated sensory neurons released the neuropeptide Substance P, which stimulated proximally located CD301b+ DCs through the Mas-related G-protein coupled receptor member A1 (MRGPRA1). Substance P induced CD301b+ DC migration to the dLN where they initiated T helper-2 cell differentiation. Thus, sensory neurons act as primary sensors of allergens, linking exposure to activation of allergic-skewing DCs and the initiation of an allergic immune response.


Asunto(s)
Alérgenos/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Hipersensibilidad/etiología , Hipersensibilidad/metabolismo , Células Receptoras Sensoriales/metabolismo , Sustancia P/biosíntesis , Animales , Biomarcadores , Movimiento Celular/inmunología , Femenino , Ganglios Espinales/citología , Hipersensibilidad/diagnóstico , Masculino , Ratones , Células Receptoras Sensoriales/inmunología
13.
Cell Rep ; 31(8): 107679, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32460031

RESUMEN

Generating robust CD4+ T-helper cell type 1 (Th1) responses is essential for protective vaccine-induced type 1 immunity. Here, we examine whether immunization formulation associated with enhanced vaccine efficacy promotes antigen targeting and cell recruitment into lymph node (LN) niches associated with optimal type 1 responses. Immunization with antigen and Toll-like receptor agonist emulsified in oil leads to an increased differentiation of IFNγ/TNF-α+ polyfunctional Th1 cells compared to an identical immunization in saline. Oil immunization results in a rapid delivery and persistence of antigen in interfollicular regions (IFRs) of the LN, whereas without oil, antigen is distributed in the medullary region. Following oil immunization, CXCL10-producing inflammatory monocytes accumulate in the IFR, which mobilizes antigen-specific CD4+ T cells into this niche. In this microenvironment, CD4+ T cells are advantageously positioned to encounter arriving IL-12-producing inflammatory dendritic cells (DCs). These data suggest that formulations delivering antigen to the LN IFR create an inflammatory niche that can improve vaccine efficacy.


Asunto(s)
Inmunidad/inmunología , Inmunización/métodos , Ganglios Linfáticos/inmunología , Células TH1/inmunología , Animales , Humanos , Ratones
14.
Cell ; 180(1): 15-17, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31951516

RESUMEN

In this issue of Cell, Jarret et al., Lai et al., and Matheis et al. demonstrate the extensive interplay between the nervous system and immune and epithelial cells of the gut to orchestrate host defense in homeostasis and following Salmonella infection.


Asunto(s)
Sistema Nervioso Entérico , Microbioma Gastrointestinal , Inmunidad Mucosa , Interleucina-18 , Acero
15.
Immunity ; 49(3): 449-463.e6, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30170811

RESUMEN

The migration of mature dendritic cells (DCs) into the draining lymph node (dLN) is thought to depend solely on the chemokine receptor CCR7. CD301b+ DCs migrate into the dLN after cutaneous allergen exposure and are required for T helper 2 (Th2) differentiation. We found that CD301b+ DCs poorly upregulated CCR7 expression after allergen exposure and required a second chemokine signal, mediated by CCR8 on CD301b+ DCs and its ligand CCL8, to exit the subcapsular sinus (SCS) and enter the lymph node (LN) parenchyma. After allergen exposure, CD169+SIGN-R1+ macrophages in interfollicular regions produced CCL8, which synergized with CCL21 in a Src-kinase-dependent manner to promote CD301b+ DC migration. In CCR8-deficient mice, CD301b+ DCs remained in the SCS and were unable to enter the LN parenchyma, resulting in defective Th2 differentiation. We have defined a CCR8-dependent stepwise mechanism of DC-subset-specific migration through which LN CD169+SIGN-R1+ macrophages control the polarization of the adaptive immune response.


Asunto(s)
Células Dendríticas/fisiología , Hipersensibilidad/inmunología , Ganglios Linfáticos/inmunología , Receptores CCR7/metabolismo , Receptores CCR8/metabolismo , Animales , Antígenos CD/metabolismo , Movimiento Celular , Células Cultivadas , Quimiocina CCL8/metabolismo , Modelos Animales de Enfermedad , Femenino , Cadenas alfa de Integrinas/metabolismo , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores CCR8/genética
16.
J Infect Dis ; 218(suppl_1): S44-S48, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-29878132

RESUMEN

Residency training is a profound experience that greatly influences the career trajectory of every trainee. Currently, residency programs focus heavily (or almost exclusively) on the acquisition of medical knowledge and fail to foster intellectual curiosity and introduce residents to careers in investigation. We share 3 programs embedded in residency training where this focus is shifted with an emphasis on prompting intellectual curiosity and exciting residents about careers in investigation to revitalize the physician-scientist workforce.


Asunto(s)
Internado y Residencia , Médicos , Investigadores , Selección de Profesión , Fuerza Laboral en Salud , Humanos
17.
Immunity ; 48(5): 1014-1028.e6, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29752062

RESUMEN

Stromal cells (SCs) establish the compartmentalization of lymphoid tissues critical to the immune response. However, the full diversity of lymph node (LN) SCs remains undefined. Using droplet-based single-cell RNA sequencing, we identified nine peripheral LN non-endothelial SC clusters. Included are the established subsets, Ccl19hi T-zone reticular cells (TRCs), marginal reticular cells, follicular dendritic cells (FDCs), and perivascular cells. We also identified Ccl19lo TRCs, likely including cholesterol-25-hydroxylase+ cells located at the T-zone perimeter, Cxcl9+ TRCs in the T-zone and interfollicular region, CD34+ SCs in the capsule and medullary vessel adventitia, indolethylamine N-methyltransferase+ SCs in the medullary cords, and Nr4a1+ SCs in several niches. These data help define how transcriptionally distinct LN SCs support niche-restricted immune functions and provide evidence that many SCs are in an activated state.


Asunto(s)
Ganglios Linfáticos/inmunología , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Células del Estroma/inmunología , Transcriptoma/inmunología , Animales , Quimiocina CCL19/genética , Quimiocina CCL19/inmunología , Quimiocina CCL19/metabolismo , Células Dendríticas Foliculares/inmunología , Células Dendríticas Foliculares/metabolismo , Femenino , Ganglios Linfáticos/metabolismo , Tejido Linfoide/citología , Tejido Linfoide/inmunología , Tejido Linfoide/metabolismo , Ratones Endogámicos C57BL , Células del Estroma/metabolismo
18.
Open Forum Infect Dis ; 2(1): ofv027, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26034776

RESUMEN

Validated skin testing is lacking for many drugs, including ceftaroline. The cross-reactivity between ceftaroline and other ß-lactam antibiotics is unknown. We report a case of a pregnant patient with cystic fibrosis and multiple drug allergies who required ceftaroline for methicillin-resistant Staphylococcus aureus pneumonia and underwent an uncomplicated empiric desensitization procedure.

19.
Artículo en Inglés | MEDLINE | ID: mdl-25635046

RESUMEN

Chemokines are chemotactic cytokines that control the migration and positioning of immune cells in tissues and are critical for the function of the innate immune system. Chemokines control the release of innate immune cells from the bone marrow during homeostasis as well as in response to infection and inflammation. They also recruit innate immune effectors out of the circulation and into the tissue where, in collaboration with other chemoattractants, they guide these cells to the very sites of tissue injury. Chemokine function is also critical for the positioning of innate immune sentinels in peripheral tissue and then, following innate immune activation, guiding these activated cells to the draining lymph node to initiate and imprint an adaptive immune response. In this review, we will highlight recent advances in understanding how chemokine function regulates the movement and positioning of innate immune cells at homeostasis and in response to acute inflammation, and then we will review how chemokine-mediated innate immune cell trafficking plays an essential role in linking the innate and adaptive immune responses.


Asunto(s)
Quimiocinas/fisiología , Inmunidad Innata/fisiología , Homeostasis , Humanos , Inflamación/fisiopatología
20.
Case Reports Immunol ; 2014: 910215, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25379312

RESUMEN

Humoral immune deficiencies have been associated with noninfectious disease complications including autoimmune cytopenias and pulmonary disease. Herein we present a patient who underwent splenectomy for autoimmune cytopenias and subsequently was diagnosed with humoral immune deficiency in the context of recurrent infections. Immunoglobulin analysis prior to initiation of intravenous immunoglobulin (IVIG) therapy was notable for low age-matched serum levels of IgA (11 mg/dL), IgG2 (14 mg/L), and IgG4 (5 mg/L) with a preserved total level of IgG. Flow cytometry was remarkable for B cell maturation arrest at the IgM+/IgD+ stage. Selective screening for known primary immune deficiency-causing genetic defects was negative. The disease course was uniquely complicated by the development of pulmonary arteriovenous malformations (AVMs), ultimately requiring bilateral lung transplantation in 2012. This is a patient with humoral immune deficiency that became apparent only after splenectomy, which argues for routine immunologic evaluation prior to vaccination and splenectomy. Lung transplantation is a rare therapeutic endpoint and to our knowledge has never before been described in a patient with humoral immune deficiency for the indication of pulmonary AVMs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA