Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38617233

RESUMEN

Ferroptosis is an iron-dependent, non-apoptotic form of cell death resulting from the accumulation of lipid peroxides. Colorectal cancer (CRC) accumulates high levels of intracellular iron and reactive oxygen species (ROS), thereby sensitizing cells to ferroptosis. The selenoprotein glutathione peroxidase (GPx4) is a key enzyme in the detoxification of lipid peroxides and can be inhibited by the compound (S)-RSL3 ([1S,3R]-RSL3). However, the stereoisomer (R)-RSL3 ([1R,3R]-RSL3), which does not inhibit GPx4, exhibits equipotent activity to (S)-RSL3 across a panel of CRC cell lines. Utilizing CRC cell lines with an inducible knockdown of GPx4, we demonstrate that (S)-RSL3 sensitivity does not align with GPx4 dependency. Subsequently, a biotinylated (S)-RSL3 was then synthesized to perform affinity purification-mass spectrometry (AP-MS), revealing that (S)-RSL3 acts as a pan-inhibitor of the selenoproteome, targeting both the glutathione and thioredoxin peroxidase systems as well as multiple additional selenoproteins. To investigate the therapeutic potential of broadly disrupting the selenoproteome as a therapeutic strategy in CRC, we employed further chemical and genetic approaches to disrupt selenoprotein function. The findings demonstrate that the selenoprotein inhibitor Auranofin can induce ferroptosis and/or oxidative cell death both in-vitro and in-vivo. Consistent with this data we observe that AlkBH8, a tRNA-selenocysteine methyltransferase required for the translational incorporation of selenocysteine, is essential for CRC growth. In summary, our research elucidates the complex mechanisms underlying ferroptosis in CRC and reveals that modulation of the selenoproteome provides multiple new therapeutic targets and opportunities in CRC.

2.
bioRxiv ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38645243

RESUMEN

The intestine plays a key role in metabolism, nutrient and water absorption, and provides both physical and immunological defense against dietary and luminal antigens. The protective mucus lining in the intestine is a critical component of intestinal barrier function that when compromised, can lead to dysfunctional intestinal barriers that are a defining characteristic of inflammatory bowel disease (IBD), among other intestinal diseases. Here, we define a new role for the flavin-containing monooxygenase family of enzymes in maintaining a healthy intestinal epithelium. In nematodes, we find that Cefmo-2 is necessary and sufficient for proper intestinal barrier function, intestinal actin expression, and is induced by intestinal damage. In mice, we utilize an intestine-specific, inducible knockout model of the prevalent gut Fmo (Fmo5) and find striking phenotypes within two weeks of knockout. These phenotypes include sex-dependent changes in colon epithelial histology, goblet cell localization and maturation factors, and mucus barrier formation. Each of these changes are significantly more severe in female mice, plausibly mirroring differences observed in some types of IBD in humans. Looking further at these phenotypes, we find increased protein folding stress in Fmo5 knockout animals and successfully rescue the severe female phenotype with addition of a chemical ER chaperone. Together, our results identify a new role for Fmo5 in the mammalian intestine and support a key role for Fmo5 in maintenance of ER/protein homeostasis and proper mucus barrier formation.

3.
Nat Chem Biol ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509349

RESUMEN

Angiogenic programming in the vascular endothelium is a tightly regulated process for maintaining tissue homeostasis and is activated in tissue injury and the tumor microenvironment. The metabolic basis of how gas signaling molecules regulate angiogenesis is elusive. Here, we report that hypoxic upregulation of ·NO in endothelial cells reprograms the transsulfuration pathway to increase biogenesis of hydrogen sulfide (H2S), a proangiogenic metabolite. However, decreased H2S oxidation due to sulfide quinone oxidoreductase (SQOR) deficiency synergizes with hypoxia, inducing a reductive shift and limiting endothelial proliferation that is attenuated by dissipation of the mitochondrial NADH pool. Tumor xenografts in whole-body (WBCreSqorfl/fl) and endothelial-specific (VE-cadherinCre-ERT2Sqorfl/fl) Sqor-knockout mice exhibit lower mass and angiogenesis than control mice. WBCreSqorfl/fl mice also exhibit decreased muscle angiogenesis following femoral artery ligation compared to control mice. Collectively, our data reveal the molecular intersections between H2S, O2 and ·NO metabolism and identify SQOR inhibition as a metabolic vulnerability for endothelial cell proliferation and neovascularization.

4.
Nature ; 626(8000): 859-863, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326609

RESUMEN

Bacteria in the gastrointestinal tract produce amino acid bile acid amidates that can affect host-mediated metabolic processes1-6; however, the bacterial gene(s) responsible for their production remain unknown. Herein, we report that bile salt hydrolase (BSH) possesses dual functions in bile acid metabolism. Specifically, we identified a previously unknown role for BSH as an amine N-acyltransferase that conjugates amines to bile acids, thus forming bacterial bile acid amidates (BBAAs). To characterize this amine N-acyltransferase BSH activity, we used pharmacological inhibition of BSH, heterologous expression of bsh and mutants in Escherichia coli and bsh knockout and complementation in Bacteroides fragilis to demonstrate that BSH generates BBAAs. We further show in a human infant cohort that BBAA production is positively correlated with the colonization of bsh-expressing bacteria. Lastly, we report that in cell culture models, BBAAs activate host ligand-activated transcription factors including the pregnane X receptor and the aryl hydrocarbon receptor. These findings enhance our understanding of how gut bacteria, through the promiscuous actions of BSH, have a significant role in regulating the bile acid metabolic network.


Asunto(s)
Aciltransferasas , Amidohidrolasas , Aminas , Ácidos y Sales Biliares , Biocatálisis , Microbioma Gastrointestinal , Humanos , Aciltransferasas/metabolismo , Amidohidrolasas/metabolismo , Aminas/química , Aminas/metabolismo , Bacteroides fragilis/enzimología , Bacteroides fragilis/genética , Bacteroides fragilis/metabolismo , Ácidos y Sales Biliares/química , Ácidos y Sales Biliares/metabolismo , Estudios de Cohortes , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Microbioma Gastrointestinal/fisiología , Ligandos , Receptor X de Pregnano/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Factores de Transcripción/metabolismo , Lactante , Técnicas de Cultivo de Célula
5.
bioRxiv ; 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38405737

RESUMEN

Colorectal cancer (CRC) is a major public health concern and disproportionately impacts racial/ethnic minority populations in the US. Animal models are helpful in examining human health disparities because many stress-induced human health conditions can be recapitulated using mouse models. Azoxymethane (AOM)/ dextran sodium sulfate (DSS) treatment can be used to model colitis-associated cancers. While colitis-associated cancers account for only 2% of colon cancers, the AOM/DSS model is useful for examining links between inflammation, immunity, and colon cancer. Mice were housed in enriched and impoverished environments for 1-month prior to behavioral testing. Following behavioral testing the mice were subjected to the AOM/DSS model. While our analysis revealed no significant behavioral variances between the impoverished and enriched housing conditions, we found significant effects in tumorigenesis. Enriched mice had fewer tumors and smaller tumor volumes compared to impoverished mice. African Americans are at higher risk for early onset colorectal cancers in part due to social economic status. Furthermore, housing conditions and environment may reflect social economic status. Research aimed at understanding links between social economic status and colorectal cancer progression is important for eliminating disparities in health outcomes.

6.
Annu Rev Pathol ; 19: 291-317, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-37832943

RESUMEN

Oxygen (O2) is essential for cellular metabolism and biochemical reactions. When the demand for O2 exceeds the supply, hypoxia occurs. Hypoxia-inducible factors (HIFs) are essential to activate adaptive and survival responses following hypoxic stress. In the gut (intestines) and liver, the presence of oxygen gradients or physiologic hypoxia is necessary to maintain normal homeostasis. While physiologic hypoxia is beneficial and aids in normal functions, pathological hypoxia is harmful as it exacerbates inflammatory responses and tissue dysfunction and is a hallmark of many cancers. In this review, we discuss the role of gut and liver hypoxia-induced signaling, primarily focusing on HIFs, in the physiology and pathobiology of gut and liver diseases. Additionally, we examine the function of HIFs in various cell types during gut and liver diseases, beyond intestinal epithelial and hepatocyte HIFs. This review highlights the importance of understanding hypoxia-induced signaling in the pathogenesis of gut and liver diseases and emphasizes the potential of HIFs as therapeutic targets.


Asunto(s)
Hipoxia , Hepatopatías , Humanos , Hipoxia/metabolismo , Hipoxia/patología , Oxígeno/metabolismo , Transducción de Señal
7.
Cancer Discov ; 14(1): 158-175, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-37902550

RESUMEN

How cell metabolism regulates DNA repair is incompletely understood. Here, we define a GTP-mediated signaling cascade that links metabolism to DNA repair and has significant therapeutic implications. GTP, but not other nucleotides, regulates the activity of Rac1, a guanine nucleotide-binding protein, which promotes the dephosphorylation of serine 323 on Abl-interactor 1 (Abi-1) by protein phosphatase 5 (PP5). Dephosphorylated Abi-1, a protein previously not known to activate DNA repair, promotes nonhomologous end joining. In patients and mouse models of glioblastoma, Rac1 and dephosphorylated Abi-1 mediate DNA repair and resistance to standard-of-care genotoxic treatments. The GTP-Rac1-PP5-Abi-1 signaling axis is not limited to brain cancer, as GTP supplementation promotes DNA repair and Abi-1-S323 dephosphorylation in nonmalignant cells and protects mouse tissues from genotoxic insult. This unexpected ability of GTP to regulate DNA repair independently of deoxynucleotide pools has important implications for normal physiology and cancer treatment. SIGNIFICANCE: A newly described GTP-dependent signaling axis is an unexpected link between nucleotide metabolism and DNA repair. Disrupting this pathway can overcome cancer resistance to genotoxic therapy while augmenting it can mitigate genotoxic injury of normal tissues. This article is featured in Selected Articles from This Issue, p. 5.


Asunto(s)
Glioblastoma , Transducción de Señal , Humanos , Ratones , Animales , Transducción de Señal/genética , Reparación del ADN , Daño del ADN , Guanosina Trifosfato
8.
Am J Physiol Gastrointest Liver Physiol ; 326(1): G53-G66, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37933447

RESUMEN

Neutrophils are abundant immune cells in the colon tumor microenvironment. Studies have shown that neutrophils are recruited into hypoxic foci in colon cancer. However, the impact of hypoxia signaling on neutrophil function and its involvement in colon tumorigenesis remain unclear. To address this, we generated mice with a deletion of hypoxia-inducible factor (HIF)-1α or HIF-2α in neutrophils driven by the MRP8Cre (HIF-1αΔNeu) or (HIF-2αΔNeu) and littermate controls. In an azoxymethane (AOM)/dextran sulfate sodium (DSS) model of colon cancer, the disruption of neutrophils-HIF-1α did not result in any significant changes in body weight, colon length, tumor size, proliferation, or burden. However, the disruption of HIF-2α in neutrophils led to a slight increase in body weight, a significant decrease in the number of tumors, and a reduction in tumor size and volume compared with their littermate controls. Histological analysis of colon tissue from mice with HIF-2α-deficient neutrophils revealed notable reductions in proliferation as compared with control mice. In addition, we observed reduced levels of proinflammatory cytokines, such as TNF-α and IL-1ß, in neutrophil-specific HIF-2α-deficient mice in both the tumor tissue as well as the neutrophils. Importantly, it is worth noting that the reduced tumorigenesis associated with HIF-2α deficiency in neutrophils was not evident in already established syngeneic tumors or a DSS-induced inflammation model, indicating a potential role of HIF-2α specifically in colon tumorigenesis. In conclusion, we found that the loss of neutrophil-specific HIF-2α slows colon tumor growth and progression by reducing the levels of inflammatory mediators.NEW & NOTEWORTHY Despite the importance of hypoxia and neutrophils in colorectal cancer (CRC), the contribution of neutrophil-specific HIFs to colon tumorigenesis is not known. We describe that neutrophil HIF-1α has no impact on colon cancer, whereas neutrophil HIF-2α loss reduces CRC growth by decreasing proinflammatory and immunosuppressive cytokines. Furthermore, neutrophil HIF-2α does not reduce preestablished tumor growth or inflammation-induced colitis. The present study offers novel potential of neutrophil HIF-2α as a therapeutic target in CRC.


Asunto(s)
Neoplasias Asociadas a Colitis , Neoplasias del Colon , Animales , Ratones , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Peso Corporal , Carcinogénesis/patología , Transformación Celular Neoplásica/patología , Neoplasias Asociadas a Colitis/genética , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Citocinas , Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Inflamación , Neutrófilos , Microambiente Tumoral
9.
JCI Insight ; 8(18)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737265

RESUMEN

Lung contusion and gastric aspiration (LC and GA) are major risk factors for developing acute respiratory distress following trauma. Hypoxia from lung injury is mainly regulated by hypoxia-inducible factor 1α (HIF-1α). Published data from our group indicate that HIF-1α regulation in airway epithelial cells (AEC) drives the acute inflammatory response following LC and GA. Metabolomic profiling and metabolic flux of Type II AEC following LC revealed marked increases in glycolytic and TCA intermediates in vivo and in vitro that were HIF-1α dependent. GLUT-1/4 expression was also increased in HIF-1α+/+ mice, suggesting that increased glucose entry may contribute to increased intermediates. Importantly, lactate incubation in vitro on Type II cells did not significantly increase the inflammatory byproduct IL-1ß. Contrastingly, succinate had a direct proinflammatory effect on human small AEC by IL-1ß generation in vitro. This effect was reversed by dimethylmalonate, suggesting an important role for succinate dehydrogenase in mediating HIF-1α effects. We confirmed the presence of the only known receptor for succinate binding, SUCNR1, on Type II AEC. These results support the hypothesis that succinate drives HIF-1α-mediated airway inflammation following LC. This is the first report to our knowledge of direct proinflammatory activation of succinate in nonimmune cells such as Type II AEC in direct lung injury models.


Asunto(s)
Lesión Pulmonar , Síndrome de Dificultad Respiratoria , Humanos , Animales , Ratones , Ácido Succínico , Succinatos , Células Epiteliales , Hipoxia , Inflamación , Pulmón
10.
bioRxiv ; 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37090571

RESUMEN

How cell metabolism regulates DNA repair is incompletely understood. Here, we define a GTP-mediated signaling cascade that links metabolism to DNA repair and has significant therapeutic implications. GTP, but not other nucleotides, regulates the activity of Rac1, a G protein, that promotes the dephosphorylation of serine 323 on Abl-interactor 1 (Abi-1) by protein phosphatase 5 (PP5). Dephosphorylated Abi-1, a protein previously not known to activate DNA repair, promotes non-homologous end joining. In patients and mouse models of glioblastoma, Rac1 and dephosphorylated Abi-1 mediate DNA repair and resistance to standard of care genotoxic treatments. The GTP-Rac1-PP5-Abi-1 signaling axis is not limited to brain cancer, as GTP supplementation promotes DNA repair and Abi-1-S323 dephosphorylation in non-malignant cells and protects mouse tissues from genotoxic insult. This unexpected ability of GTP to regulate DNA repair independently of deoxynucleotide pools has important implications for normal physiology and cancer treatment.

11.
Inflammation ; 46(2): 491-508, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36596930

RESUMEN

Hypoxia-inducible factors (HIFs) are transcription factors critical for the adaptive response to hypoxia. There is also an essential link between hypoxia and inflammation, and HIFs have been implicated in the dysregulated immune response to various insults. Despite the prevalence of hypoxia in tissue trauma, especially involving the lungs, there remains a dearth of studies investigating the role of HIFs in clinically relevant injury models. Here, we summarize the effects of HIF-1α on the vasculature, metabolism, inflammation, and apoptosis in the lungs and review the role of HIFs in direct lung injuries, including lung contusion, acid aspiration, pneumonia, and COVID-19. We present data that implicates HIF-1α in the context of arguments both in favor and against its role as adaptive or injurious in the propagation of the acute inflammatory response in lung injuries. Finally, we discuss the potential for pharmacological modulation of HIFs as a new class of therapeutics in the modern intensive care unit.


Asunto(s)
COVID-19 , Lesión Pulmonar , Humanos , Lesión Pulmonar/metabolismo , COVID-19/metabolismo , Pulmón/metabolismo , Inflamación/metabolismo , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
12.
Gastroenterology ; 164(3): 376-391.e13, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36410445

RESUMEN

BACKGROUND & AIMS: Colorectal cancer (CRC) is a devastating disease that is highly modulated by dietary nutrients. Mechanistic target of rapamycin complex 1 (mTORC1) contributes to tumor growth and limits therapy responses. Growth factor signaling is a major mechanism of mTORC1 activation. However, compensatory pathways exist to sustain mTORC1 activity after therapies that target oncogenic growth factor signaling. Amino acids potently activate mTORC1 via amino acid-sensing GTPase activity towards Rags (GATOR). The role of amino acid-sensing pathways in CRC is unclear. METHODS: Human colon cancer cell lines, preclinical intestinal epithelial-specific GATOR1 and GATOR2 knockout mice subjected to colitis-induced or sporadic colon tumor models, small interfering RNA screening targeting regulators of mTORC1, and tissues of patients with CRC were used to assess the role of amino acid sensing in CRC. RESULTS: We identified loss-of-function mutations of the GATOR1 complex in CRC and showed that altered expression of amino acid-sensing pathways predicted poor patient outcomes. We showed that dysregulated amino acid-sensing induced mTORC1 activation drives colon tumorigenesis in multiple mouse models. We found amino acid-sensing pathways to be essential in the cellular reprogramming of chemoresistance, and chemotherapeutic-resistant patients with colon cancer exhibited de-regulated amino acid sensing. Limiting amino acids in in vitro and in vivo models (low-protein diet) reverted drug resistance, revealing a metabolic vulnerability. CONCLUSIONS: Our findings suggest a critical role for amino acid-sensing pathways in driving CRC and highlight the translational implications of dietary protein intervention in CRC.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Animales , Ratones , Humanos , Aminoácidos/metabolismo , Resistencia a Antineoplásicos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
13.
Cell Metab ; 35(1): 134-149.e6, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36528023

RESUMEN

Effective therapies are lacking for patients with advanced colorectal cancer (CRC). The CRC tumor microenvironment has elevated metabolic waste products due to altered metabolism and proximity to the microbiota. The role of metabolite waste in tumor development, progression, and treatment resistance is unclear. We generated an autochthonous metastatic mouse model of CRC and used unbiased multi-omic analyses to reveal a robust accumulation of tumoral ammonia. The high ammonia levels induce T cell metabolic reprogramming, increase exhaustion, and decrease proliferation. CRC patients have increased serum ammonia, and the ammonia-related gene signature correlates with altered T cell response, adverse patient outcomes, and lack of response to immune checkpoint blockade. We demonstrate that enhancing ammonia clearance reactivates T cells, decreases tumor growth, and extends survival. Moreover, decreasing tumor-associated ammonia enhances anti-PD-L1 efficacy. These findings indicate that enhancing ammonia detoxification can reactivate T cells, highlighting a new approach to enhance the efficacy of immunotherapies.


Asunto(s)
Amoníaco , Neoplasias Colorrectales , Animales , Ratones , Agotamiento de Células T , Linfocitos T , Neoplasias Colorrectales/patología , Inmunoterapia , Microambiente Tumoral
14.
Phytother Res ; 36(4): 1822-1835, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35233841

RESUMEN

Bacterial pneumonia is one of the most important causes of mortality in the United States. The bacteria Klebsiella pneumoniae (KP) accounts for a significant proportion of community and hospital-acquired infections. Here, we determine that the holy basil (Ocimum sanctum) extract improves cell viability and dampens the proinflammatory cytokine response in an in vitro model of pneumonia. For this, A549, a human alveolar basal epithelial cell line, was subjected to a lethal KP model following a 24-hr pretreatment with basil extract. Bacteremia, cell viability, apoptosis, MTT assay, phagocytic capacity, cytokines, and Khe gene expression were assessed in these cells following pneumonia. Cell morphology analysis showed that holy basil protected A549 cells from KP infection-mediated effects by inhibiting cell death due to apoptosis. Additionally, in the presence of basil, A549 cells demonstrated significantly higher bactericidal capacity and phagocytosis. Administration of holy basil led to reduced expression of hypoxia-inducible factor-1/2a, nuclear factor kappa B, and Khe in the KP-infected cells while increasing interferon (IFN)-γ expression. Our results suggest that basil significantly reduced cell death in the setting of KP infection, likely via attenuation of cytokine and IFN-γ mediated signaling pathways. Holy basil is a promising therapeutic agent for managing and treating bacterial pneumonia based on its potency.


Asunto(s)
Aceites Volátiles , Neumonía Bacteriana , Células Epiteliales Alveolares/metabolismo , Humanos , Interferón gamma/uso terapéutico , FN-kappa B/metabolismo , Ocimum sanctum , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Neumonía Bacteriana/tratamiento farmacológico , Neumonía Bacteriana/metabolismo , Neumonía Bacteriana/microbiología
15.
Blood ; 139(16): 2547-2552, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-34990508

RESUMEN

Intestinal iron absorption is activated during increased systemic demand for iron. The best-studied example is iron deficiency anemia, which increases intestinal iron absorption. Interestingly, the intestinal response to anemia is very similar to that of iron overload disorders, as both the conditions activate a transcriptional program that leads to a hyperabsorption of iron via the transcription factor hypoxia-inducible factor 2α (HIF2α). However, pathways for selective targeting of intestine-mediated iron overload remain unknown. Nuclear receptor coactivator 4 (NCOA4) is a critical cargo receptor for autophagic breakdown of ferritin and the subsequent release of iron, in a process termed ferritinophagy. Our work demonstrates that NCOA4-mediated intestinal ferritinophagy is integrated into systemic iron demand via HIF2α. To demonstrate the importance of the intestinal HIF2α/ferritinophagy axis in systemic iron homeostasis, whole-body and intestine-specific NCOA4-/- mouse lines were generated and assessed. The analyses revealed that the intestinal and systemic response to iron deficiency was not altered after disruption of intestinal NCOA4. However, in a mouse model of hemochromatosis, ablation of intestinal NCOA4 was protective against iron overload. Therefore, NCOA4 can be selectively targeted for the management of iron overload disorders without disrupting the physiological processes involved in the response to systemic iron deficiency.


Asunto(s)
Anemia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hemocromatosis , Sobrecarga de Hierro , Animales , Enterocitos/metabolismo , Hemocromatosis/genética , Hierro/metabolismo , Ratones , Coactivadores de Receptor Nuclear/genética , Factores de Transcripción/metabolismo
16.
Cancer Cell ; 40(2): 185-200.e6, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-34951957

RESUMEN

Microbial dysbiosis is a colorectal cancer (CRC) hallmark and contributes to inflammation, tumor growth, and therapy response. Gut microbes signal via metabolites, but how the metabolites impact CRC is largely unknown. We interrogated fecal metabolites associated with mouse models of colon tumorigenesis with varying mutational load. We find that microbial metabolites from healthy mice or humans are growth-repressive, and this response is attenuated in mice and patients with CRC. Microbial profiling reveals that Lactobacillus reuteri and its metabolite, reuterin, are downregulated in mouse and human CRC. Reuterin alters redox balance, and reduces proliferation and survival in colon cancer cells. Reuterin induces selective protein oxidation and inhibits ribosomal biogenesis and protein translation. Exogenous Lactobacillus reuteri restricts colon tumor growth, increases tumor reactive oxygen species, and decreases protein translation in vivo. Our findings indicate that a healthy microbiome and specifically, Lactobacillus reuteri, is protective against CRC through microbial metabolite exchange.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Microbioma Gastrointestinal , Gliceraldehído/análogos & derivados , Oxidación-Reducción , Propano/metabolismo , Animales , Biomarcadores , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Metabolismo Energético , Glutatión/metabolismo , Gliceraldehído/metabolismo , Gliceraldehído/farmacología , Interacciones Microbiota-Huesped , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Metabolómica/métodos , Metagenómica/métodos , Ratones , Modelos Biológicos , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo , Propano/farmacología , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Nat Metab ; 3(7): 969-982, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34155415

RESUMEN

Colorectal cancer (CRC) requires massive iron stores, but the complete mechanisms by which CRC modulates local iron handling are poorly understood. Here, we demonstrate that hepcidin is activated ectopically in CRC. Mice deficient in hepcidin specifically in the colon tumour epithelium, compared with wild-type littermates, exhibit significantly diminished tumour number, burden and size in a sporadic model of CRC, whereas accumulation of intracellular iron by deletion of the iron exporter ferroportin exacerbates these tumour parameters. Metabolomic analysis of three-dimensional patient-derived CRC tumour enteroids indicates a prioritization of iron in CRC for the production of nucleotides, which is recapitulated in our hepcidin/ferroportin mouse CRC models. Mechanistically, our data suggest that iron chelation decreases mitochondrial function, thereby altering nucleotide synthesis, whereas exogenous supplementation of nucleosides or aspartate partially rescues tumour growth in patient-derived enteroids and CRC cell lines in the presence of an iron chelator. Collectively, these data suggest that ectopic hepcidin in the tumour epithelium establishes an axis to sequester iron in order to maintain the nucleotide pool and sustain proliferation in colorectal tumours.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Hepcidinas/metabolismo , Hierro/metabolismo , Mitocondrias/metabolismo , Nucleótidos/metabolismo , Animales , Línea Celular Tumoral , Células Epiteliales/metabolismo , Humanos , Ratones
18.
J Clin Invest ; 131(12)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33914705

RESUMEN

Hypoxia is a hallmark of solid tumors that promotes cell growth, survival, and metastasis and confers resistance to chemo and radiotherapies. Hypoxic responses are largely mediated by the transcription factors hypoxia-inducible factor 1α (HIF-1α) and HIF-2α. Our work demonstrates that HIF-2α is essential for colorectal cancer (CRC) progression. However, targeting hypoxic cells is difficult, and tumors rapidly acquire resistance to inhibitors of HIF-2α. To overcome this limitation, we performed a small molecule screen to identify HIF-2α-dependent vulnerabilities. Several known ferroptosis activators and dimethyl fumarate (DMF), a cell-permeable mitochondrial metabolite derivative, led to selective synthetic lethality in HIF-2α-expressing tumor enteroids. Our work demonstrated that HIF-2α integrated 2 independent forms of cell death via regulation of cellular iron and oxidation. First, activation of HIF-2α upregulated lipid and iron regulatory genes in CRC cells and colon tumors in mice and led to a ferroptosis-susceptible cell state. Second, via an iron-dependent, lipid peroxidation-independent pathway, HIF-2α activation potentiated ROS via irreversible cysteine oxidation and enhanced cell death. Inhibition or knockdown of HIF-2α decreased ROS and resistance to oxidative cell death in vitro and in vivo. Our results demonstrated a mechanistic vulnerability in cancer cells that were dependent on HIF-2α that can be leveraged for CRC treatment.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Neoplasias Colorrectales/metabolismo , Regulación Neoplásica de la Expresión Génica , Hierro/metabolismo , Proteínas de Neoplasias/biosíntesis , Especies Reactivas de Oxígeno/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Muerte Celular/genética , Hipoxia de la Célula/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Células HCT116 , Células HT29 , Humanos , Ratones , Ratones Transgénicos , Proteínas de Neoplasias/genética , Oxidación-Reducción
19.
Cell Mol Gastroenterol Hepatol ; 12(2): 585-597, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33798787

RESUMEN

BACKGROUND & AIMS: Fatty liver or nonalcoholic fatty liver disease (NAFLD) is the most common liver disease associated with comorbidities such as insulin resistance and cardiovascular and metabolic diseases. Chronic activation of hypoxic signaling, in particular, hypoxia-inducible factor (HIF)2α, promotes NAFLD progression by repressing genes involved in fatty acid ß-oxidation through unclear mechanisms. Therefore, we assessed the precise mechanism by which HIF2α promotes fatty liver and its physiological relevance in metabolic homeostasis. METHODS: Primary hepatocytes from VHL (VhlΔHep) and PPARα (Ppara-null) knockout mice that were loaded with fatty acids, murine dietary protocols to induce hepatic steatosis, and fasting-refeeding dietary regimen approaches were used to test our hypothesis. RESULTS: Inhibiting autophagy using chloroquine did not decrease lipid contents in VhlΔHep primary hepatocytes. Inhibition of ERK using MEK inhibitor decreased lipid contents in primary hepatocytes from a genetic model of constitutive HIF activation and primary hepatocytes loaded with free fatty acids. Moreover, MEK-ERK inhibition potentiated ligand-dependent activation of PPARα. We also show that MEK-ERK inhibition improved diet-induced hepatic steatosis, which is associated with the induction of PPARα target genes. During fasting, fatty acid ß-oxidation is induced by PPARα, and refeeding inhibits ß-oxidation. Our data show that ERK is involved in the post-prandial repression of hepatic PPARα signaling. CONCLUSIONS: Overall, our results demonstrate that ERK activated by hypoxia signaling plays a crucial role in fatty acid ß-oxidation genes by repressing hepatocyte PPARα signaling.


Asunto(s)
Hígado Graso/patología , Hipoxia/enzimología , Hígado/metabolismo , Sistema de Señalización de MAP Quinasas , PPAR alfa/metabolismo , Animales , Autofagia , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ácidos Grasos/metabolismo , Hígado Graso/genética , Conducta Alimentaria , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Metabolismo de los Lípidos , Ratones Noqueados , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Oxidación-Reducción , Periodo Posprandial , ARN Mensajero/genética , ARN Mensajero/metabolismo
20.
FASEB J ; 34(2): 2929-2943, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31908045

RESUMEN

Diet plays a significant role in the pathogenesis of inflammatory bowel disease (IBD). A recent epidemiological study has shown an inverse relationship between nutritional manganese (Mn) status and IBD patients. Mn is an essential micronutrient required for normal cell function and physiological processes. To date, the roles of Mn in intestinal homeostasis remain unknown and the contribution of Mn to IBD has yet to be explored. Here, we provide evidence that Mn is critical for the maintenance of the intestinal barrier and that Mn deficiency exacerbates dextran sulfate sodium (DSS)-induced colitis in mice. Specifically, when treated with DSS, Mn-deficient mice showed increased morbidity, weight loss, and colon injury, with a concomitant increase in inflammatory cytokine levels and oxidative and DNA damage. Even without DSS treatment, dietary Mn deficiency alone increased intestinal permeability by impairing intestinal tight junctions. In contrast, mice fed a Mn-supplemented diet showed slightly increased tolerance to DSS-induced experimental colitis, as judged by the colon length. Despite the well-appreciated roles of intestinal microbiota in driving inflammation in IBD, the gut microbiome composition was not altered by changes in dietary Mn. We conclude that Mn is necessary for proper maintenance of the intestinal barrier and provides protection against DSS-induced colon injury.


Asunto(s)
Colitis , Colon , Suplementos Dietéticos , Microbioma Gastrointestinal/efectos de los fármacos , Manganeso/farmacología , Animales , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/microbiología , Colitis/patología , Colon/metabolismo , Colon/microbiología , Colon/patología , Daño del ADN , Sulfato de Dextran/toxicidad , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/microbiología , Inflamación/patología , Ratones , Oxidación-Reducción/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA