Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Hum Mol Genet ; 32(24): 3374-3389, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37756622

RESUMEN

Defective lysosomal acidification is responsible for a large range of multi-systemic disorders associated with impaired autophagy. Diseases caused by mutations in the VMA21 gene stand as exceptions, specifically affecting skeletal muscle (X-linked Myopathy with Excessive Autophagy, XMEA) or liver (Congenital Disorder of Glycosylation). VMA21 chaperones vacuolar (v-) ATPase assembly, which is ubiquitously required for proper lysosomal acidification. The reason VMA21 deficiencies affect specific, but divergent tissues remains unknown. Here, we show that VMA21 encodes a yet-unreported long protein isoform, in addition to the previously described short isoform, which we name VMA21-120 and VMA21-101, respectively. In contrast to the ubiquitous pattern of VMA21-101, VMA21-120 was predominantly expressed in skeletal muscle, and rapidly up-regulated upon differentiation of mouse and human muscle precursors. Accordingly, VMA21-120 accumulated during development, regeneration and denervation of mouse skeletal muscle. In contrast, neither induction nor blockade of autophagy, in vitro and in vivo, strongly affected VMA21 isoform expression. Interestingly, VMA21-101 and VMA21-120 both localized to the sarcoplasmic reticulum of muscle cells, and interacted with the v-ATPase. While VMA21 deficiency impairs autophagy, VMA21-101 or VMA21-120 overexpression had limited impact on autophagic flux in muscle cells. Importantly, XMEA-associated mutations lead to both VMA21-101 deficiency and loss of VMA21-120 expression. These results provide important insights into the clinical diversity of VMA21-related diseases and uncover a muscle-specific VMA21 isoform that potently contributes to XMEA pathogenesis.


Asunto(s)
Enfermedades Musculares , ATPasas de Translocación de Protón Vacuolares , Humanos , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Músculo Esquelético/metabolismo , Genes Ligados a X , Autofagia/genética
2.
Exp Cell Res ; 421(2): 113392, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36273532

RESUMEN

C2C12 cells are widely used in the muscle field, as they differentiate easily into myotubes and show limited constraints to culture as compared to primary myoblasts. Both C2C12 and primary myoblasts are hard to transfect, which affects downstream experiments. More than 95% of the reports published since 2015 with C2C12 cells have used one gold standard transfectant (i.e., Lipofectamine®), although several studies have suggested less than 30% efficiency of this reagent. In parallel, the capacity of other commercial reagents to transfect muscle cells remains largely unknown. Here, we compared transfection efficiency of five commercial reagents (Lipofectamine® 3000, Viafect™, Fugene® HD, C2C12 Cell Avalanche®, and JetOPTIMUS®) in C2C12 cells. By optimizing DNA:transfectant ratios and cell density, all reagents reached more than 60% transfection efficiency with limited effects on cell growth and viability. GFP-positive myotubes were efficiently generated in cultures transfected with Lipofectamine® 3000, Fugene® HD, C2C12 Cell Avalanche®, and JetOPTIMUS®. Notably, in conditions optimized for DNA transfer in C2C12 cells, these reagents showed low efficiency to transfer siRNA and higher toxicity for primary muscle cells. In conclusion, we reported yet uncharacterized transfection reagents that can serve as a suitable low-cost alternative to the current gold standard in C2C12 cells.


Asunto(s)
ADN , Fibras Musculares Esqueléticas , Indicadores y Reactivos , Transfección , ADN/genética , ARN Interferente Pequeño/genética , Diferenciación Celular
3.
Nat Commun ; 12(1): 3337, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099689

RESUMEN

Binding of mammalian transcription factors (TFs) to regulatory regions is hindered by chromatin compaction and DNA methylation of their binding sites. Nevertheless, pioneer transcription factors (PFs), a distinct class of TFs, have the ability to access nucleosomal DNA, leading to nucleosome remodelling and enhanced chromatin accessibility. Whether PFs can bind to methylated sites and induce DNA demethylation is largely unknown. Using a highly parallelized approach to investigate PF ability to bind methylated DNA and induce DNA demethylation, we show that the interdependence between DNA methylation and TF binding is more complex than previously thought, even within a select group of TFs displaying pioneering activity; while some PFs do not affect the methylation status of their binding sites, we identified PFs that can protect DNA from methylation and others that can induce DNA demethylation at methylated binding sites. We call the latter super pioneer transcription factors (SPFs), as they are seemingly able to overcome several types of repressive epigenetic marks. Finally, while most SPFs induce TET-dependent active DNA demethylation, SOX2 binding leads to passive demethylation, an activity enhanced by the co-binding of OCT4. This finding suggests that SPFs could interfere with epigenetic memory during DNA replication.


Asunto(s)
Sitios de Unión , Metilación de ADN , ADN/metabolismo , Ensayos Analíticos de Alto Rendimiento , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Animales , Cromatina , Desmetilación del ADN , Replicación del ADN , Epigenómica , Expresión Génica , Ratones , Nucleosomas , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Unión Proteica , ARN Interferente Pequeño/genética , Células Sf9 , Factores de Transcripción/metabolismo
5.
Immunity ; 48(5): 937-950.e8, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29768177

RESUMEN

Infections are thought to trigger CD8+ cytotoxic T lymphocyte (CTL) responses during autoimmunity. However, the transcriptional programs governing the tissue-destructive potential of CTLs remain poorly defined. In a model of central nervous system (CNS) inflammation, we found that infection with lymphocytic choriomeningitis virus (LCMV), but not Listeria monocytogenes (Lm), drove autoimmunity. The DNA-binding factor TOX was induced in CTLs during LCMV infection and was essential for their encephalitogenic properties, and its expression was inhibited by interleukin-12 during Lm infection. TOX repressed the activity of several transcription factors (including Id2, TCF-1, and Notch) that are known to drive CTL differentiation. TOX also reduced immune checkpoint sensitivity by restraining the expression of the inhibitory checkpoint receptor CD244 on the surface of CTLs, leading to increased CTL-mediated damage in the CNS. Our results identify TOX as a transcriptional regulator of tissue-destructive CTLs in autoimmunity, offering a potential mechanistic link to microbial triggers.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Proteínas de Homeodominio/inmunología , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Adulto , Anciano , Animales , Autoinmunidad/inmunología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/virología , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Coriomeningitis Linfocítica/virología , Virus de la Coriomeningitis Linfocítica/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/inmunología , Linfocitos T Citotóxicos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...