RESUMEN
Abstract Aim: To analyse the potential usefulness and clinical relevance of the assessment by echocardiography with left atrial strain, based on the myocardial atrial deformation curves with speckle-tracking velocity vector imaging (VVI), in the analysis of short-form recurrent atrial extra systoles in ambulatory patients not suffering from organic cardiopathy. Methods: We designed a descriptive, prospective, and observational study including 270 patients between the ages of 18 and 75 assessed during an outpatient cardiology consultation attended due to palpitations over a period of two years. Using ambulatory electrocardiographic monitoring, we selected cases with short forms of repetitive atrial extrasystole, isolated or recurrentatrial fibrillation and a control group formed by those patients without repetitive ectopia. All patients underwent a thorough echocardiographic study during their first cardiological visit. Results: The analysis of the dynamic curves segmental deformation generated after an atrial extrasystole can reveal different points of origin of the extrasystole and detect specific anatomical alterations in the interatrial conduction at the level of the Bachmann's fascicle showing different models of electro anatomical activation possibly involved in the appearance of repetitive forms. Higher values of dyssynchrony between the septal and lateral wall and elongation in the time of interatrial electromechanical conduction could also be related to the existence of repetitive ectopic beats. Conclusions: Our ambulatory study employing the left atrial longitudinal strain, particularly in its segmental analysis, provides new insights into its the usefulness and potential clinical relevance.
Resumen Objetivo: Analizar la utilidad y relevancia clínica de la evaluación mediante ecocardiografía basada en las curvas de deformación auricular miocárdica con imágenes vectoriales de velocidad (VVI) de speckle-tracking, en el análisis de las extrasístoles auriculares recurrentes de corta duración en pacientes ambulatorios sin cardiopatía orgánica. Métodos: Se diseñó un estudio descriptivo, prospectivo y observacional que incluyó a 270 pacientes de entre 18 y 75 años evaluados durante una consulta externa de cardiología a la que acudieron por palpitaciones durante un periodo de dos años. Mediante el uso de monitorización electrocardiográfica ambulatoria, se seleccionaron casos con formas cortas de extrasistolia auricular repetitiva, fibrilación auricular aislada o repetitiva y un grupo control formado por aquellos pacientes sin ectopia repetitiva. Todos los pacientes se sometieron a un estudio ecocardiográfico exhaustivo durante su primera visita cardiológica. Resultados: El análisis de las curvas dinámicas de deformación segmentaria generadas tras un extrasístole auricular diferentes modelos de activación electroanatómica posiblemente implicados en la aparición de formas repetitivas. Valores mayores de disincronía entre la pared septal y lateral y el alargamiento en el tiempo de conducción electromecánica intraauricular pudieran también relacionarse con la existencia de latidos ectópicos repetitivos. Conclusiones: Nuestro estudio ambulatorio empleando la deformación longitudinal auricular izquierda, particularmente en su análisis segmentario, proporciona nuevas perspectivas sobre su utilidad y potencial relevancia clínica.
RESUMEN
Aim: To analyse the potential usefulness and clinical relevance of the assessment by echocardiography with left atrial strain, based on the myocardial atrial deformation curves with speckle-tracking velocity vector imaging (VVI), in the analysis of short-form recurrent atrial extra systoles in ambulatory patients not suffering from organic cardiopathy. Methods: We designed a descriptive, prospective, and observational study including 270 patients between the ages of 18 and 75 assessed during an outpatient cardiology consultation attended due to palpitations over a period of two years. Using ambulatory electrocardiographic monitoring, we selected cases with short forms of repetitive atrial extrasystole, isolated or recurrentatrial fibrillation and a control group formed by those patients without repetitive ectopia. All patients underwent a thorough echocardiographic study during their first cardiological visit. Results: The analysis of the dynamic curves segmental deformation generated after an atrial extrasystole can reveal different points of origin of the extrasystole and detect specific anatomical alterations in the interatrial conduction at the level of the Bachmann's fascicle showing different models of electro anatomical activation possibly involved in the appearance of repetitive forms. Higher values of dyssynchrony between the septal and lateral wall and elongation in the time of interatrial electromechanical conduction could also be related to the existence of repetitive ectopic beats. Conclusions: Our ambulatory study employing the left atrial longitudinal strain, particularly in its segmental analysis, provides new insights into its the usefulness and potential clinical relevance.
Objetivo: Analizar la utilidad y relevancia clínica de la evaluación mediante ecocardiografía basada en las curvas de deformación auricular miocárdica con imágenes vectoriales de velocidad (VVI) de speckle-tracking, en el análisis de las extrasístoles auriculares recurrentes de corta duración en pacientes ambulatorios sin cardiopatía orgánica. Métodos: Se diseñó un estudio descriptivo, prospectivo y observacional que incluyó a 270 pacientes de entre 18 y 75 años evaluados durante una consulta externa de cardiología a la que acudieron por palpitaciones durante un periodo de dos años. Mediante el uso de monitorización electrocardiográfica ambulatoria, se seleccionaron casos con formas cortas de extrasistolia auricular repetitiva, fibrilación auricular aislada o repetitiva y un grupo control formado por aquellos pacientes sin ectopia repetitiva. Todos los pacientes se sometieron a un estudio ecocardiográfico exhaustivo durante su primera visita cardiológica. Resultados: El análisis de las curvas dinámicas de deformación segmentaria generadas tras un extrasístole auricular diferentes modelos de activación electroanatómica posiblemente implicados en la aparición de formas repetitivas. Valores mayores de disincronía entre la pared septal y lateral y el alargamiento en el tiempo de conducción electromecánica intraauricular pudieran también relacionarse con la existencia de latidos ectópicos repetitivos. Conclusiones: Nuestro estudio ambulatorio empleando la deformación longitudinal auricular izquierda, particularmente en su análisis segmentario, proporciona nuevas perspectivas sobre su utilidad y potencial relevancia clínica.
Asunto(s)
Fibrilación Atrial , Complejos Atriales Prematuros , Humanos , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Fibrilación Atrial/diagnóstico , Estudios Prospectivos , Sístole , Atrios Cardíacos/diagnóstico por imagen , Ecocardiografía/métodosRESUMEN
OBJECTIVE: To develop a theory of change of a program to promote physical activity in eleven health districts, in order to improve its design and plan its evaluation. METHOD: Four focus groups were carried out, to develop a participatory theory of change, to identify the expected changes (long, medium and short term) of "La Ribera Camina" program, according to the following stakeholders: primary healthcare professionals, local government representatives and community members. A thematic analysis was used to identify the actions to be taken to achieve these changes, as well as the difficulties and facilitators to enhance the sustainability of the program. RESULTS: The identified changes were classified into four themes: 1) changes in physical and social health (improved physical condition, healthy habits, self-esteem and perceived well-being); 2) organizational and relational changes (better coordination between institutions); 3) specific changes to the program (incorporation of more "assets" and local associations, especially male participants, more trails and schedules); and 4) changes in the environment (improved trails' infrastructures and safety). CONCLUSIONS: The theory of change allows to identify and classify the changes that are expected, the actions to be carried out and the links between elements of the program. This will serve as the basis for its evaluation. This methodology could be applied to other programs interested in incorporating intersectorality and community engagement in their design and evaluation.
Asunto(s)
Ejercicio Físico , Informe de Investigación , Humanos , MasculinoRESUMEN
The presence of sharp peaks in the real part of the static dielectric response function are usually accepted as indication of charge or spin instabilities in a material. However, there are misconceptions that Fermi surface (FS) nesting guarantees a peak in the response function like in one-dimensional systems, and, in addition, response function matrix elements between empty and occupied states are usually considered of secondary importance and typically set to unity like in the free electron gas case. In this work, we explicitly show, through model systems and real materials, within the framework of density functional theory, that predictions about the peaks in the response function, using FS nesting and constant matrix elements yields erroneous conclusions. We find that the inclusion of the matrix elements completely alters the structure of the response function. In all the cases studied other than the one-dimensional case we find that the inclusion of matrix elements washes out the structure found with constant matrix elements. Our conclusion is that it is imperative to calculate the full response function, with matrix elements, when making predictions about instabilities in novel materials.
RESUMEN
First-principles electronic structure calculations are now accessible to a very large community of users across many disciplines, thanks to many successful software packages, some of which are described in this special issue. The traditional coding paradigm for such packages is monolithic, i.e., regardless of how modular its internal structure may be, the code is built independently from others, essentially from the compiler up, possibly with the exception of linear-algebra and message-passing libraries. This model has endured and been quite successful for decades. The successful evolution of the electronic structure methodology itself, however, has resulted in an increasing complexity and an ever longer list of features expected within all software packages, which implies a growing amount of replication between different packages, not only in the initial coding but, more importantly, every time a code needs to be re-engineered to adapt to the evolution of computer hardware architecture. The Electronic Structure Library (ESL) was initiated by CECAM (the European Centre for Atomic and Molecular Calculations) to catalyze a paradigm shift away from the monolithic model and promote modularization, with the ambition to extract common tasks from electronic structure codes and redesign them as open-source libraries available to everybody. Such libraries include "heavy-duty" ones that have the potential for a high degree of parallelization and adaptation to novel hardware within them, thereby separating the sophisticated computer science aspects of performance optimization and re-engineering from the computational science done by, e.g., physicists and chemists when implementing new ideas. We envisage that this modular paradigm will improve overall coding efficiency and enable specialists (whether they be computer scientists or computational scientists) to use their skills more effectively and will lead to a more dynamic evolution of software in the community as well as lower barriers to entry for new developers. The model comes with new challenges, though. The building and compilation of a code based on many interdependent libraries (and their versions) is a much more complex task than that of a code delivered in a single self-contained package. Here, we describe the state of the ESL, the different libraries it now contains, the short- and mid-term plans for further libraries, and the way the new challenges are faced. The ESL is a community initiative into which several pre-existing codes and their developers have contributed with their software and efforts, from which several codes are already benefiting, and which remains open to the community.
RESUMEN
A review of the present status, recent enhancements, and applicability of the Siesta program is presented. Since its debut in the mid-1990s, Siesta's flexibility, efficiency, and free distribution have given advanced materials simulation capabilities to many groups worldwide. The core methodological scheme of Siesta combines finite-support pseudo-atomic orbitals as basis sets, norm-conserving pseudopotentials, and a real-space grid for the representation of charge density and potentials and the computation of their associated matrix elements. Here, we describe the more recent implementations on top of that core scheme, which include full spin-orbit interaction, non-repeated and multiple-contact ballistic electron transport, density functional theory (DFT)+U and hybrid functionals, time-dependent DFT, novel reduced-scaling solvers, density-functional perturbation theory, efficient van der Waals non-local density functionals, and enhanced molecular-dynamics options. In addition, a substantial effort has been made in enhancing interoperability and interfacing with other codes and utilities, such as wannier90 and the second-principles modeling it can be used for, an AiiDA plugin for workflow automatization, interface to Lua for steering Siesta runs, and various post-processing utilities. Siesta has also been engaged in the Electronic Structure Library effort from its inception, which has allowed the sharing of various low-level libraries, as well as data standards and support for them, particularly the PSeudopotential Markup Language definition and library for transferable pseudopotentials, and the interface to the ELectronic Structure Infrastructure library of solvers. Code sharing is made easier by the new open-source licensing model of the program. This review also presents examples of application of the capabilities of the code, as well as a view of on-going and future developments.
RESUMEN
We present a simple view on band unfolding of the energy bands obtained from supercell calculations. It relies on the relationship between the local density of states in reciprocal space and the fully unfolded band structure. This provides an intuitive and valid approach not only for periodic, but also for systems with no translational symmetry. By refolding into the primitive Brillouin zone of the pristine crystal we recover the conventional unfolded bands. We implement our algorithm in the Siesta package. As an application, we study a set of benchmark examples, ranging from simple defects on crystals to systems with increasing complexity and of current interest, as the effect of external pressure on rotated graphene bilayers.
RESUMEN
Molecular wires are essential components for future nanoscale electronics. However, the preparation of individual long conductive molecules is still a challenge. MMX metal-organic polymers are quasi-1D sequences of single halide atoms (X) bridging subunits with two metal ions (MM) connected by organic ligands. They are excellent electrical conductors as bulk macroscopic crystals and as nanoribbons. However, according to theoretical calculations, the electrical conductance found in the experiments should be even higher. Here, a novel and simple drop-casting procedure to isolate bundles of few to single MMX chains is demonstrated. Furthermore, an exponential dependence of the electrical resistance of one or two MMX chains as a function of their length that does not agree with predictions based on their theoretical band structure is reported. This dependence is attributed to strong Anderson localization originated by structural defects. Theoretical modeling confirms that the current is limited by structural defects, mainly vacancies of iodine atoms, through which the current is constrained to flow. Nevertheless, measurable electrical transport along distances beyond 250 nm surpasses that of all other molecular wires reported so far. This work places in perspective the role of defects in 1D wires and their importance for molecular electronics.
RESUMEN
We describe a method, that we call data projection onto parameter space (DPPS), to optimize an energy functional of the electron density, so that it reproduces a dataset of experimental magnitudes. Our scheme, based on Bayes theorem, constrains the optimized functional not to depart unphysically from existing ab initio functionals. The resulting functional maximizes the probability of being the "correct" parameterization of a given functional form, in the sense of Bayes theory. The application of DPPS to water sheds new light on why density functional theory has performed rather poorly for liquid water, on what improvements are needed, and on the intrinsic limitations of the generalized gradient approximation to electron exchange and correlation. Finally, we present tests of our water-optimized functional, that we call vdW-DF-w, showing that it performs very well for a variety of condensed water systems.
RESUMEN
The isothermal compressibility of water is essential to understand its anomalous properties. We compute it by ab initio molecular dynamics simulations of 200 molecules at five densities, using two different van der Waals density functionals. While both functionals predict compressibilities within ~30% of experiment, only one of them accurately reproduces, within the uncertainty of the simulation, the density dependence of the self-diffusion coefficient in the anomalous region. The discrepancies between the two functionals are explained in terms of the low- and high-density structures of the liquid.
RESUMEN
Finite-range numerical atomic orbitals are the basis functions of choice for several first principles methods, due to their flexibility and scalability. Generating and testing such basis sets, however, remains a significant challenge for the end user. We discuss these issues and present a new scheme for generating improved polarization orbitals of finite range. We then develop a series of high-accuracy basis sets for the water molecule, and report on their performance in describing the monomer and dimer, two phases of ice, and liquid water at ambient and high density. The tests are performed by comparison with plane-wave calculations, and show the atomic orbital basis sets to exhibit an excellent level of transferability and consistency. The highest-order bases (quadruple-ζ) are shown to give accuracies comparable to a plane-wave kinetic energy cutoff of at least ~1000 eV for quantities such as energy differences and ionic forces, as well as achieving significantly greater accuracies for total energies and absolute pressures.
RESUMEN
In this work we have synthetized and characterized by X-ray diffraction five cobalt complexes with 6-thioguanine (6-ThioGH), 6-thioguanosine (6-ThioGuoH), or 2'-deoxy-6-thioguanosine (2'-d-6-ThioGuoH) ligands. In all cases, these ligands coordinate to cobalt via N7 and S6 forming a chelate ring. However, independently of reagents ratio, 6-ThioGH provided monodimensional cobalt(II) coordination polymers, in which the 6-ThioG(-) acts as bridging ligand. However, for 2'-d-6-ThioGuoH and 6-ThioGuoH, the structure directing effect of the sugar residue gives rise to mononuclear cobalt complexes which form extensive H-bond interactions to generate 3D supramolecular networks. Furthermore, with 2'-d-6-ThioGuoH the cobalt ion remains in the divalent state, whereas with 6-ThioGuoH oxidation occurs and Co(III) is found. The electrical and magnetic properties of the coordination polymers isolated have been studied and the results discussed with the aid of DFT calculations, in the context of molecular wires.
Asunto(s)
Cobalto/química , Complejos de Coordinación/química , Tioguanina/química , Conductividad Eléctrica , Modelos Moleculares , Polímeros/química , Difracción de Rayos XRESUMEN
One-dimensional conductive polymers are attractive materials because of their potential in flexible and transparent electronics. Despite years of research, on the macro- and nano-scale, structural disorder represents the major hurdle in achieving high conductivities. Here we report measurements of highly ordered metal-organic nanoribbons, whose intrinsic (defect-free) conductivity is found to be 10(4) S m(-1), three orders of magnitude higher than that of our macroscopic crystals. This magnitude is preserved for distances as large as 300 nm. Above this length, the presence of structural defects (~ 0.5%) gives rise to an inter-fibre-mediated charge transport similar to that of macroscopic crystals. We provide the first direct experimental evidence of the gapless electronic structure predicted for these compounds. Our results postulate metal-organic molecular wires as good metallic interconnectors in nanodevices.
RESUMEN
The role of dispersion or van de Waals (VDW) interactions in imidazolium-based room-temperature ionic liquids is studied within the framework of density functional theory, using a recently developed non-empirical functional [M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004)], as efficiently implemented in the SIESTA code [G. Román-Pérez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009)]. We present results for the equilibrium structure and lattice parameters of several crystalline phases, finding a general improvement with respect to both the local density (LDA) and the generalized gradient approximations (GGA). Similar to other systems characterized by VDW bonding, such as rare gas and benzene dimers as well as solid argon, equilibrium distances and volumes are consistently overestimated by ≈7%, compared to -11% within LDA and 11% within GGA. The intramolecular geometries are retained, while the intermolecular distances and orientations are significantly improved relative to LDA and GGA. The quality is superior to that achieved with tailor-made empirical VDW corrections ad hoc [M. G. Del Pópolo, C. Pinilla, and P. Ballone, J. Chem. Phys. 126, 144705 (2007)]. We also analyse the performance of an optimized version of this non-empirical functional, where the screening properties of the exchange have been tuned to reproduce high-level quantum chemical calculations [J. Klimes, D. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 074203 (2010)]. The results for solids are even better with volumes and geometries reproduced within 2% of experimental data. We provide some insight into the issue of polymorphism of [bmim][Cl] crystals, and we present results for the geometry and energetics of [bmim][Tf] and [mmim][Cl] neutral and charged clusters, which validate the use of empirical force fields.
RESUMEN
It is known that ab initio molecular dynamics (AIMD) simulations of liquid water at ambient conditions, based on the generalized gradient approximation (GGA) to density functional theory (DFT), with commonly used functionals fail to produce structural and diffusive properties in reasonable agreement with experiment. This is true for canonical, constant temperature simulations where the density of the liquid is fixed to the experimental density. The equilibrium density, at ambient conditions, of DFT water has recently been shown by Schmidt et al. [J. Phys. Chem. B, 113, 11959 (2009)] to be underestimated by different GGA functionals for exchange and correlation, and corrected by the addition of interatomic pair potentials to describe van der Waals (vdW) interactions. In this contribution we present a DFT-AIMD study of liquid water using several GGA functionals as well as the van der Waals density functional (vdW-DF) of Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)]. As expected, we find that the density of water is grossly underestimated by GGA functionals. When a vdW-DF is used, the density improves drastically and the experimental diffusivity is reproduced without the need of thermal corrections. We analyze the origin of the density differences between all the functionals. We show that the vdW-DF increases the population of non-H-bonded interstitial sites, at distances between the first and second coordination shells. However, it excessively weakens the H-bond network, collapsing the second coordination shell. This structural problem is partially associated to the choice of GGA exchange in the vdW-DF. We show that a different choice for the exchange functional is enough to achieve an overall improvement both in structure and diffusivity.
Asunto(s)
Simulación de Dinámica Molecular , Teoría Cuántica , Agua/química , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Molecular , TemperaturaRESUMEN
We present a study of the adsorption and diffusion of CH4, CO2, and H2 molecules in clathrate hydrates using ab initio van der Waals density functional formalism [M. Dion, Phys. Rev. Lett. 92, 246401 (2004)10.1103/PhysRevLett.92.246401]. We find that the adsorption energy is dominated by van der Waals interactions and that, without them, gas hydrates would not be stable. We calculate the maximum adsorption capacity as well as the maximum hydrocarbon size that can be adsorbed. The relaxation of the host lattice is essential for a good description of the diffusion activation energies, which are estimated to be of the order of 0.2, 0.4, and 1.0 eV for H2, CO2, and CH4, respectively.
RESUMEN
Carbon nitride materials have extraordinary potential in various applications, including catalysts, filled-particles, and superhard materials. Carbon nitride nanoclusters have been prepared under mild solvothermal conditions by a reaction between 1,3,5-trichlotriazine and sodium azide in toluene. The bulk material formed has a C(3)N(4) composition and consists of spheres with diameters ranging from approximately 1 nm to 4 mum. Nanometer-sized clusters of C(3)N(4) stoichiometry have been isolated on surfaces by sublimation or simple physicochemical methods. The clusters have then been characterized by atomic force microscopy and X-ray photoelectron spectroscopy. The laser desorption ionization mass spectra show peaks assignable to the C(12)N(16), C(21)N(28), and C(33)N(44) molecules which could correspond to cage structures with 4, 7, and 11 units of the C(3)N(4) subunit, respectively. The structure and stability of these new nitrogen-rich carbon nitride nanocages has been investigated using density functional theory calculations.
Asunto(s)
Fulerenos/química , Nanopartículas/química , Nitrilos/química , Espectrometría de Masas , Modelos Moleculares , Conformación Molecular , Tamaño de la Partícula , Espectroscopía de FotoelectronesRESUMEN
We present an efficient implementation of the van der Waals density functional of Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)], which expresses the nonlocal correlation energy as a double spatial integral. We factorize the integration kernel and use fast Fourier transforms to evaluate the self-consistent potential, total energy, and atomic forces, in O(NlogN) operations. The resulting overhead, for medium and large systems, is a small fraction of the total computational cost, representing a dramatic speedup over the O(N(2)) evaluation of the double integral. This opens the realm of first-principles simulations to the large systems of interest in soft matter and biomolecular problems. We apply the method to calculate the binding energies and the barriers for relative translation and rotation in double-wall carbon nanotubes.
RESUMEN
Molecular hydrogen adsorption in a nanoporous metal-organic framework structure (MOF-74) is studied via van der Waals density-functional calculations. The primary and secondary binding sites for H(2) are confirmed. The low-lying rotational and translational energy levels are calculated, based on the orientation and position dependent potential energy surface at the two binding sites. A consistent picture is obtained between the calculated rotational-translational transitions for different H(2) loadings and those measured by inelastic neutron scattering exciting the singlet to triplet (para to ortho) transition in H(2). The H(2) binding energy after zero-point energy correction due to the rotational and translational motions is predicted to be approximately 100 meV in good agreement with the experimental value of approximately 90 meV.