Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Diabetologia ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38871836

RESUMEN

AIMS/HYPOTHESIS: Stem cell-derived islets (SC-islets) are being used as cell replacement therapy for insulin-dependent diabetes. Non-invasive long-term monitoring methods for SC-islet grafts, which are needed to detect misguided differentiation in vivo and to optimise their therapeutic effectiveness, are lacking. Positron emission tomography (PET) has been used to monitor transplanted primary islets. We therefore aimed to apply PET as a non-invasive monitoring method for SC-islet grafts. METHODS: We implanted different doses of human SC-islets, SC-islets derived using an older protocol or a state-of-the-art protocol and SC-islets genetically rendered hyper- or hypoactive into mouse calf muscle to yield different kinds of grafts. We followed the grafts with PET using two tracers, glucagon-like peptide 1 receptor-binding [18F]F-dibenzocyclooctyne-exendin-4 ([18F]exendin) and the dopamine precursor 6-[18F]fluoro-L-3,4-dihydroxyphenylalanine ([18F]FDOPA), for 5 months, followed by histological assessment of graft size and composition. Additionally, we implanted a kidney subcapsular cohort with different SC-islet doses to assess the connection between C-peptide and stem cell-derived beta cell (SC-beta cell) mass. RESULTS: Small but pure and large but impure grafts were derived from SC-islets. PET imaging allowed detection of SC-islet grafts even <1 mm3 in size, [18F]exendin having a better detection rate than [18F]FDOPA (69% vs 44%, <1 mm3; 96% vs 85%, >1 mm3). Graft volume quantified with [18F]exendin (r2=0.91) and [18F]FDOPA (r2=0.86) strongly correlated with actual graft volume. [18F]exendin PET delineated large cystic structures and its uptake correlated with graft SC-beta cell proportion (r2=0.68). The performance of neither tracer was affected by SC-islet graft hyper- or hypoactivity. C-peptide measurements under fasted or glucose-stimulated conditions did not correlate with SC-islet graft volume or SC-beta cell mass, with C-peptide under hypoglycaemia having a weak correlation with SC-beta cell mass (r2=0.52). CONCLUSIONS/INTERPRETATION: [18F]exendin and [18F]FDOPA PET enable non-invasive assessment of SC-islet graft size and aspects of graft composition. These methods could be leveraged for optimising SC-islet cell replacement therapy in diabetes.

3.
EJNMMI Radiopharm Chem ; 9(1): 24, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526746

RESUMEN

BACKGROUND: Production of [11C]CH4 from gas targets is notorious for weak performance with respect to yield, especially when using high beam currents. Post-target conversion of [11C]CO2 to [11C]CH4 is a widely used roundabout method in 11C-radiochemistry, but the added complexity increase the challenge to control carrier carbon. Thus in-target-produced [11C]CH4 is superior with respect to molar activity. We studied the in-target production of [11C]CO2 and [11C]CH4 from nitrogen gas targets as a function of beam current, irradiation time, and target temperature. RESULTS: [11C]CO2 production was practically unchanged across the range of varied parameters, but the [11C]CH4 yield, presented in terms of saturation yield YSAT(11CH4), had a negative correlation with beam current and a positive correlation with target chamber temperature. A formulated model equation indicates behavior where the [11C]CH4 formation follows a parabolic graph as a function of beam current. The negative square term, i.e., the yield loss, is postulated to arise from Haber-Bosch-like NH3 formation: N2 + 3H2 → 2NH3. The studied conditions suggest that the NH3 (liq.) would be condensed on the target chamber walls, thus depleting the hydrogen reserve needed for the conversion of nascent 11C to [11C]CH4. CONCLUSIONS: [11C]CH4 production can be improved by increasing the target chamber temperature, which is presented in a mathematical formula. Our observations have implications for targetry design (geometry, gas volume and composition, pressure) and irradiation conditions, providing specific knowledge to enhance [11C]CH4 production at high beam currents. Increased [11C]CH4 radioactivity is an obvious benefit in radiosynthesis in terms of product yield and molar radioactivity.

4.
EJNMMI Res ; 14(1): 25, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38446249

RESUMEN

BACKGROUND: P2X7 receptor has emerged as a potentially superior PET imaging marker to TSPO, the gold standard for imaging glial reactivity. [11C]SMW139 is the most recently developed radiotracer to image P2X7 receptor. The aim of this study was to image reactive glia in the APP/PS1-21 transgenic (TG) mouse model of Aß deposition longitudinally using [11C]SMW139 targeting P2X7 receptor and to compare tracer uptake to that of [18F]F-DPA targeting TSPO at the final imaging time point. TG and wild type (WT) mice underwent longitudinal in vivo PET imaging using [11C]SMW139 at 5, 8, 11, and 14 months, followed by [18F]F-DPA PET scan only at 14 months. In vivo imaging results were verified by ex vivo brain autoradiography, immunohistochemical staining, and analysis of [11C]SMW139 unmetabolized fraction in TG and WT mice. RESULTS: Longitudinal change in [11C]SMW139 standardized uptake values (SUVs) showed no statistically significant increase in the neocortex and hippocampus of TG or WT mice, which was consistent with findings from ex vivo brain autoradiography. Significantly higher [18F]F-DPA SUVs were observed in brain regions of TG compared to WT mice. Quantified P2X7-positive staining in the cortex and thalamus of TG mice showed a minor increase in receptor expression with ageing, while TSPO-positive staining in the same regions showed a more robust increase in expression in TG mice as they aged. [11C]SMW139 was rapidly metabolized in mice, with 33% of unmetabolized fraction in plasma and 29% in brain homogenates 30 min after injection. CONCLUSIONS: [11C]SMW139, which has a lower affinity for the rodent P2X7 receptor than the human version of the receptor, was unable to image the low expression of P2X7 receptor in the APP/PS1-21 mouse model. Additionally, the rapid metabolism of [11C]SMW139 in mice and the presence of several brain-penetrating radiometabolites significantly impacted the analysis of in vivo PET signal of the tracer. Finally, [18F]F-DPA targeting TSPO was more suitable for imaging reactive glia and neuroinflammatory processes in the APP/PS1-21 mouse model, based on the findings presented in this study and previous studies with this mouse model.

5.
Exp Neurol ; 373: 114673, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38163475

RESUMEN

Hypoxic-ischemic encephalopathy due to insufficient oxygen delivery to brain tissue is a leading cause of death or severe morbidity in neonates. The early recognition of the most severely affected individuals remains a clinical challenge. We hypothesized that hypoxic-ischemic injury can be detected using PET radiotracers for hypoxia ([18F]EF5), glucose metabolism ([18F]FDG), and inflammation ([18F]F-DPA). METHODS: A preclinical model of neonatal hypoxic-ischemic brain injury was made in 9-d-old rat pups by permanent ligation of the left common carotid artery followed by hypoxia (8% oxygen and 92% nitrogen) for 120 min. In vivo PET imaging was performed immediately after injury induction or at different timepoints up to 21 d later. After imaging, ex vivo brain autoradiography was performed. Brain sections were stained with cresyl violet to evaluate the extent of the brain injury and to correlate it with [18F]FDG uptake. RESULTS: PET imaging revealed that all three of the radiotracers tested had significant uptake in the injured brain hemisphere. Ex vivo autoradiography revealed high [18F]EF5 uptake in the hypoxic hemisphere immediately after the injury (P < 0.0001), decreasing to baseline even 1 d postinjury. [18F]FDG uptake was highest in the injured hemisphere on the day of injury (P < 0.0001), whereas [18F]F-DPA uptake was evident after 4 d (P = 0.029), peaking 7 d postinjury (P < 0.0001), and remained significant 21 d after the injury. Targeted evaluation demonstrated that [18F]FDG uptake measured by in vivo imaging 1 d postinjury correlated positively with the brain volume loss detected 21 d later (r = 0.72, P = 0.028). CONCLUSION: Neonatal hypoxic-ischemic brain injury can be detected using PET imaging. Different types of radiotracers illustrate distinct phases of hypoxic brain damage. PET may be a new useful technique, worthy of being explored for clinical use, to predict and evaluate the course of the injury.


Asunto(s)
Lesiones Encefálicas , Hipoxia-Isquemia Encefálica , Ratas , Animales , Hipoxia-Isquemia Encefálica/diagnóstico por imagen , Fluorodesoxiglucosa F18 , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen , Modelos Animales de Enfermedad , Oxígeno , Animales Recién Nacidos
6.
J Neurosci ; 43(26): 4884-4895, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37225435

RESUMEN

Establishing the neural mechanisms responsible for the altered global states of consciousness during anesthesia and dissociating these from other drug-related effects remains a challenge in consciousness research. We investigated differences in brain activity between connectedness and disconnectedness by administering various anesthetics at concentrations designed to render 50% of the subjects unresponsive. One hundred and sixty healthy male subjects were randomized to receive either propofol (1.7 µg/ml; n = 40), dexmedetomidine (1.5 ng/ml; n = 40), sevoflurane (0.9% end-tidal; n = 40), S-ketamine (0.75 µg/ml; n = 20), or saline placebo (n = 20) for 60 min using target-controlled infusions or vaporizer with end-tidal monitoring. Disconnectedness was defined as unresponsiveness to verbal commands probed at 2.5-min intervals and unawareness of external events in a postanesthesia interview. High-resolution positron emission tomography (PET) was used to quantify regional cerebral metabolic rates of glucose (CMRglu) utilization. Contrasting scans where the subjects were classified as connected and responsive versus disconnected and unresponsive revealed that for all anesthetics, except S-ketamine, the level of thalamic activity differed between these states. A conjunction analysis across the propofol, dexmedetomidine and sevoflurane groups confirmed the thalamus as the primary structure where reduced metabolic activity was related to disconnectedness. Widespread cortical metabolic suppression was observed when these subjects, classified as either connected or disconnected, were compared with the placebo group, suggesting that these findings may represent necessary but alone insufficient mechanisms for the change in the state of consciousness.SIGNIFICANCE STATEMENT Experimental anesthesia is commonly used in the search for measures of brain function which could distinguish between global states of consciousness. However, most previous studies have not been designed to separate effects related to consciousness from other effects related to drug exposure. We employed a novel study design to disentangle these effects by exposing subjects to predefined EC50 doses of four commonly used anesthetics or saline placebo. We demonstrate that state-related effects are remarkably limited compared with the widespread cortical effects related to drug exposure. In particular, decreased thalamic activity was associated with disconnectedness with all used anesthetics except for S-ketamine.


Asunto(s)
Anestesia , Anestésicos por Inhalación , Dexmedetomidina , Ketamina , Propofol , Masculino , Humanos , Propofol/farmacología , Sevoflurano/farmacología , Ketamina/farmacología , Dexmedetomidina/farmacología , Anestésicos por Inhalación/farmacología , Anestésicos Intravenosos
7.
EJNMMI Res ; 13(1): 21, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36913049

RESUMEN

BACKGROUND: In the development of new 18F-labelled tracers, it is important to assess the amount of released [18F]fluoride taken up in the bones of experimental animals because all 18F-labelled PET-tracers are prone, to lesser or higher degree, to undergo defluorination, with subsequent release of [18F]fluoride during scanning. However, the pharmacokinetics of [18F]fluoride in bones and other organs of healthy rats have not been well documented in a comprehensive manner. We aimed to study pharmacokinetics of [18F]NaF in rats in order to increase our understanding of the biodistribution of [18F]fluoride originating from defluorination of 18F-labelled tracers. We studied [18F]fluoride uptake in Sprague Dawley rat bones, including the epiphyseal parts of the tibia and radius, the mandible, ilium, lumbar vertebrae, costochondral joints, tibia, radius, and ribs, with 60-min in vivo PET/CT imaging. Kinetic parameters, K1, Ki, Ki/K1, and k3 were calculated with a three-compartment model. In addition, separate groups of male and female rats were studied with ex vivo bone and soft tissue harvesting and gamma counting over a 6-h period. RESULTS: [18F]fluoride perfusion and uptake varied among the different bones. [18F]fluoride uptake was higher in trabecular bones, due to high perfusion and osteoblastic activity, compared to cortical bones. In soft tissues, the organ-to-blood uptake ratios increased over time in the eyes, lungs, brain, testes, and ovaries during the 6 h study period. CONCLUSION: Understanding the pharmacokinetics of [18F]fluoride in various bones and soft tissues is highly useful for assessing 18F-labelled radiotracers that release [18F]fluoride.

8.
Nucl Med Biol ; 116-117: 108309, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36521341

RESUMEN

INTRODUCTION: [18F]FMTEB, along with other tracers, was developed as a promising PET radioligand for imaging metabotropic glutamate receptor subtype 5 (mGluR5). Despite favorable preliminary results, it has not been used further for studies of mGluR5. This paper presents an in-depth preclinical evaluation of [18F]FMTEB in healthy Sprague Dawley rats. METHODS: [18F]FMTEB was synthesized from a boronic ester precursor using copper-mediated fluorination. In vivo PET imaging was performed on six rats, of which three were pre-treated with a high affinity mGluR5 receptor antagonist. An additional 18 rats were used for ex vivo experiments for metabolite analyses in plasma, brain and urine, and for biodistribution and ex vivo brain autoradiography at different time points. RESULTS: [18F]FMTEB was synthesized in adequate radiochemical yield and a molar activity of 154 ± 64 GBq/µmol. Both in vivo imaging and ex vivo brain autoradiography showed high specificity for mGluR5, and the blocking experiments showed a clear decrease in radioactivity in mGluR5-rich brain areas. Metabolite analyses confirmed fast metabolism of the tracer in plasma. The percentage of parent compound in brain tissue exceeded 90 % up to 90 min after injection. CONCLUSION: [18F]FMTEB produced via copper-mediated 18F-fluorination fulfilled the requirements for preclinical evaluation in rats. The absence of specific uptake in cerebellum and absence of defluorination of the tracer allowed cerebellum to be used as a reference tissue. Due to the fast kinetics in rats, the region-to-cerebellum ratios equilibrated within 30 min. These results prove [18F]FMTEB to be a good candidate for mapping mGluR5 in rat brain and a suitable alternative to [18F]FPEB.


Asunto(s)
Cobre , Receptor del Glutamato Metabotropico 5 , Ratas , Animales , Receptor del Glutamato Metabotropico 5/metabolismo , Ratas Sprague-Dawley , Distribución Tisular , Tomografía de Emisión de Positrones/métodos , Piridinas/química , Encéfalo/metabolismo , Radiofármacos/metabolismo
9.
J Pharm Biomed Anal ; 219: 114860, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-35738120

RESUMEN

Radiometabolites of PET tracers interfere with imaging and need to be taken into account when modeling PET data. Various tracer and radiometabolite characteristics affect the uptake rate into tissue. In this study, we investigated two such factors, lipophilicity and protein-free fraction. A novel rapid method was developed using thin-layer chromatography with digital autoradiography (radioTLC) and ultrafiltration for analyzing the protein-free fractions of an exemplar PET tracer, [11C]SMW139 (fP, free parent tracer over all radioactivity), and its radiometabolites (fM, free radiometabolites over all radioactivity). Detailed understanding of the uptake of radiometabolites into extravascular cells requires analyzing fM, which has not previously been performed for PET tracers. Mice were injected with [11C]SMW139, and time-activity curves from plasma and brain coupled with the parent fraction and free fraction data were analyzed to demonstrate the true levels of protein-free and protein-bound [11C]SMW139 and its radiometabolites in plasma. The ultrafiltration method included separate membrane correction factors for the parent tracer and its radiometabolites for analysis of unbiased fP and fM. Metabolism of [11C]SMW139 was rapid, and after 45 min, the parent fraction was 0.33 in plasma and 0.28 in brain. Ultrafiltration membrane correction had a significant effect on the fP but not the fM. From 10-45 min, the fP decreased from 0.032 to 0.007, while fM remained between 0.52 and 0.35. The much higher fM in plasma could explain why the less lipophilic radiometabolites enter the brain efficiently. This detailed understanding of fP and fM from rodents can be used in translational studies to explain the behavior of the tracer in humans. Similar parent fraction and plasma protein binding methods can be used for human in vivo analysis.


Asunto(s)
Tomografía de Emisión de Positrones , Radiofármacos , Animales , Proteínas Sanguíneas/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Humanos , Ratones , Tomografía de Emisión de Positrones/métodos , Unión Proteica , Radiofármacos/química
10.
Mol Imaging Biol ; 24(4): 641-650, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35303205

RESUMEN

PURPOSE: Recent studies have linked activated spinal glia to neuropathic pain. Here, using a positron emission tomography (PET) scanner with high spatial resolution and sensitivity, we evaluated the feasibility and sensitivity of N,N-diethyl-2-(2-(4-([18F]fluoro)phenyl)-5,7-dimethylpyrazolo[1,5-a] pyrimidin-3-yl)acetamide ([18F]F-DPA) imaging for detecting spinal cord microglial activation after partial sciatic nerve ligation (PSNL) in rats. PROCEDURES: Neuropathic pain was induced in rats (n = 20) by PSNL, and pain sensation tests were conducted before surgery and 3 and 7 days post-injury. On day 7, in vivo PET imaging and ex vivo autoradiography were performed using [18F]F-DPA or [11C]PK11195. Ex vivo biodistribution and PET imaging of the removed spinal cord were carried out with [18F]F-DPA. Sham-operated and PK11195-pretreated animals were also examined. RESULTS: Mechanical allodynia was confirmed in the PSNL rats from day 3 through day 7. Ex vivo autoradiography showed a higher lesion-to-background uptake with [18F]F-DPA compared with [11C]PK11195. Ex vivo PET imaging of the removed spinal cord showed [18F]F-DPA accumulation in the inflammation site, which was immunohistochemically confirmed to coincide with microglia activation. Pretreatment with PK11195 eliminated the uptake. The SUV values of in vivo [18F]F-DPA and [11C]PK11195 PET were not significantly increased in the lesion compared with the reference region, and were fivefold higher than the values obtained from the ex vivo data. Ex vivo biodistribution revealed a twofold higher [18F]F-DPA uptake in the vertebral body compared to that seen in the bone from the skull. CONCLUSIONS: [18F]F-DPA aided visualization of the spinal cord inflammation site in PSNL rats on ex vivo autoradiography and was superior to [11C]PK11195. In vivo [18F]F-DPA PET did not allow for visualization of tracer accumulation even using a high-spatial-resolution PET scanner. The main reason for this result was due to insufficient SUVs in the spinal cord region as compared with the background noise, in addition to a spillover from the vertebral body.


Asunto(s)
Microglía , Neuralgia , Animales , Radioisótopos de Flúor , Microglía/patología , Neuralgia/diagnóstico por imagen , Neuralgia/patología , Tomografía de Emisión de Positrones/métodos , Pirazoles , Pirimidinas , Ratas , Médula Espinal/diagnóstico por imagen , Distribución Tisular
11.
Mol Imaging Biol ; 24(1): 157-166, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34542805

RESUMEN

PURPOSE: In this study we compared the recently developed TSPO tracer [18F]F-DPA, with [18F]DPA-714 and [11C]PBR28 by performing in vivo PET imaging on the same Alzheimer's disease mouse model APP/PS1-21 (TG) and wild-type (WT) mice with all three radiotracers. PROCEDURES: To compare the radiotracer uptake, percentage of injected dose/mL (%ID/mL), standardized uptake value ratios to cerebellum (SUVRCB), and voxel-wise analyses were performed. RESULTS: The peak uptake of [18F]F-DPA was higher than 4.3% ID/mL, while [18F]DPA-714 reached just over 3% ID/mL, and [11C]PBR28 was over 4% ID/mL in only one brain region in the WT mice. The peak/60-min uptake ratios of [18F]F-DPA were significantly higher (p < 0.001) than those of [18F]DPA-714 and [11C]PBR28. The differences in [18F]F-DPA SUVRCB between WT and TG mice were highly significant (p < 0.001) in the three studied time periods after injection. [18F]DPA-714 uptake was significantly higher in TG mice starting in the 20-40-min timeframe and increased thereafter, whereas [11C]PBR28 uptake became significant at 10-20 min (p < 0.05). The voxel-wise analysis confirmed the differences between the radiotracers. CONCLUSIONS: [18F]F-DPA displays higher brain uptake, higher TG-to-WT SUVRCB ratios, and faster clearance than [18F]DPA-714 and [11C]PBR28, and could prove useful for detecting low levels of inflammation and allow for shorter dynamic PET scans.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/diagnóstico por imagen , Animales , Encéfalo/diagnóstico por imagen , Ratones , Enfermedades Neuroinflamatorias , Tomografía de Emisión de Positrones/métodos , Pirazoles , Pirimidinas
12.
Neuropharmacology ; 196: 108676, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34216585

RESUMEN

The mouse model of beta-amyloid (Aß) deposition, APP/PS1-21, exhibits high brain uptake of the tau-tracer (S)-[18F]THK5117, although no neurofibrillary tangles are present in this mouse model. For this reason we investigated (S)-[18F]THK5117 off-target binding to Aß plaques and MAO-B enzyme in APP/PS1-21 transgenic (TG) mouse model of Aß deposition. APP/PS1-21 TG and wild-type (WT) control mice in four different age groups (2-26 months) were imaged antemortem by positron emission tomography with (S)-[18F]THK5117, and then brain autoradiography. Additional animals were used for immunohistochemical staining and MAO-B enzyme blocking study with deprenyl pre-treatment. Regional standardized uptake value ratios for the cerebellum revealed a significant temporal increase in (S)-[18F]THK5117 uptake in aged TG, but not WT, brain. Immunohistochemical staining revealed a similar increase in Aß plaques but not endogenous hyper-phosphorylated tau or MAO-B enzyme, and ex vivo autography showed that uptake of (S)-[18F]THK5117 co-localized with the amyloid pathology. Deprenyl hydrochloride pre-treatment reduced the binding of (S)-[18F]THK5117 in the neocortex, hippocampus, and thalamus. This study's findings suggest that increased (S)-[18F]THK5117 binding in aging APP/PS1-21 TG mice is mainly due to increasing Aß deposition, and to a lesser extent binding to MAO-B enzyme, but not hyper-phosphorylated tau.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides/metabolismo , Encéfalo/diagnóstico por imagen , Monoaminooxidasa/metabolismo , Placa Amiloide/diagnóstico por imagen , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Compuestos de Anilina , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Hipocampo/diagnóstico por imagen , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratones , Ratones Transgénicos , Inhibidores de la Monoaminooxidasa/farmacología , Neocórtex/diagnóstico por imagen , Neocórtex/efectos de los fármacos , Neocórtex/metabolismo , Placa Amiloide/metabolismo , Tomografía de Emisión de Positrones , Presenilina-1/genética , Quinolinas , Radiofármacos , Selegilina/farmacología , Tálamo/diagnóstico por imagen , Tálamo/efectos de los fármacos , Tálamo/metabolismo
13.
Theranostics ; 11(3): 1147-1161, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33391526

RESUMEN

Rationale: Olfactory ensheathing cell (OEC) transplantation has emerged as a promising therapy for spinal cord injury (SCI) repair. In the present study, we explored the possible mechanisms of OECs transplantation underlying neuroinflammation modulation. Methods: Spinal cord inflammation after intravenous OEC transplantation was detected in vivo and ex vivo by translocator protein PET tracer [18F]F-DPA. To track transplanted cells, OECs were transduced with enhanced green fluorescent protein (eGFP) and HSV1-39tk using lentiviral vector and were monitored by fluorescence imaging and [18F]FHBG study. Protein microarray analysis and ELISA studies were employed to analyze differential proteins in the injured spinal cord after OEC transplantation. The anti-inflammation function of the upregulated protein was also proved by in vitro gene knocking down experiments and OECs/microglia co-culture experiment. Results: The inflammation in the spinal cord was decreased after OEC intravenous transplantation. The HSV1-39tk-eGFP-transduced OECs showed no accumulation in major organs and were found at the injury site. After OEC transplantation, in the spinal cord tissues, the interleukin-1 receptor antagonist (IL-1Ra) was highly upregulated while many chemokines, including pro-inflammatory chemokines IL-1α, IL-1ß were downregulated. In vitro studies confirmed that lipopolysaccharide (LPS) stimulus triggered OECs to secrete IL-1Ra. OECs significantly suppressed LPS-stimulated microglial activity, whereas IL-1Ra gene knockdown significantly reduced their ability to modulate microglial activity. Conclusion: The OECs that reached the lesion site were activated by the release of pro-inflammatory cytokines from activated microglia in the lesion site and secreted IL-1Ra to reduce neuroinflammation. Intravenous transplantation of OECs has high therapeutic effectiveness for the treatment of SCI via the secretion of IL-1Ra to reduce neuroinflammation.


Asunto(s)
Inflamación/metabolismo , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Médula Espinal/metabolismo , Animales , Trasplante de Células/métodos , Células Cultivadas , Quimiocinas/metabolismo , Regulación hacia Abajo/fisiología , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba/fisiología
14.
EJNMMI Res ; 10(1): 152, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33296042

RESUMEN

BACKGROUND: Availability of the α2C-adrenoceptor (α2C-AR) positron emission tomography (PET) tracer, [11C]ORM-13070, and the α2C-AR antagonist ORM-12741 allows probing of the roles of this G-protein coupled receptor subtype in brain function, both in healthy humans and in patients with various brain disorders. This translational study employed [11C]ORM-13070 autoradiography and PET to determine α2C-AR occupancy by ORM-12741 in rat and human brain, respectively. RESULTS: ORM-12741 has high affinity (Ki: 0.08 nM) and potent antagonist activity (Kb: 0.04 nM) as well as selectivity (Ki estimates for the human α2A-AR and α2B-AR were 8.3 nM and 0.8 nM, respectively) for the human α2C-AR subtype. [11C]ORM-13070 had highest uptake in the basal ganglia of rat and human brain. Pretreatment with ORM-12741 inhibited [11C]ORM-13070 binding in rat striatum in a time- and dose-dependent manner at 10 and 50 µg/kg (s.c.) with an EC50 estimate of 1.42 ng/mL in rat plasma, corresponding to protein-free drug concentration of 0.23 nM. In the living human brain, time- and dose-related α2C-AR occupancy was detected with EC50 estimates of 24 ng/mL and 31 ng/mL for the caudate nucleus and putamen, respectively, corresponding to protein-free concentrations in plasma of 0.07 nM and 0.1 nM. Modelling-based maximum α2C-AR occupancy estimates were 63% and 52% in the caudate nucleus and the putamen, respectively. CONCLUSIONS: ORM-12741 is a selective α2C-AR antagonist which penetrates the rat and human brain to occupy α2C-ARs in a manner consistent with its receptor pharmacology. Trial registration number and date of registration: ClinicalTrial.cov NCT00829907. Registered 11 December 2008. https://clinicaltrials.gov/ .

15.
ACS Chem Neurosci ; 11(13): 2009-2018, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32479723

RESUMEN

Cannabinoid receptor 1 (CB1R) controls various physiological and pathological conditions, including memory, motivation, and inflammation, and is thus an interesting target for positron emission tomography (PET). Herein, we report a ruthenium-mediated radiolabeling synthesis and preclinical evaluation of a new CB1R specific radiotracer, [18F]FPATPP. [18F]FPATPP was produced with 16.7 ± 5.7% decay-corrected radiochemical yield and >95 GBq/µmol molar activity. The tracer showed high stability, low defluorination, and high specific binding to CB1Rs in mouse brain.


Asunto(s)
Radioisótopos de Flúor , Rutenio , Animales , Halogenación , Ratones , Tomografía de Emisión de Positrones , Radiofármacos
16.
J Labelled Comp Radiopharm ; 63(9): 408-418, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32374481

RESUMEN

Here, we describe the development of an in-house-built device for the fully automated multistep synthesis of the cannabinoid CB1 receptor imaging tracer (3R,5R)-5-(3-([18 F]fluoromethoxy-d2 )phenyl)-3-(((R)-1-phenylethyl)amino)-1-(4-(trifluoromethyl)phenyl)pyrrolidin-2-one ([18 F]FMPEP-d2 ), following good manufacturing practices. The device is interfaced to a HPLC and a sterile filtration unit in a clean room hot cell. The synthesis involves the nucleophilic 18 F-fluorination of an alkylating agent and its GC purification, the subsequent 18 F-fluoroalkylation of a precursor molecule, the semipreparative HPLC purification of the 18 F-fluoroalkylated product, and its formulation for injection. We have optimized the duration and temperature of the 18 F-fluoroalkylation reaction and addressed the radiochemical stability of the formulated product. During the past 5 years (2013-2018), we have performed a total of 149 syntheses for clinical use with a 90% success rate. The activity yield of the formulated product has been 1.0 ± 0.4 GBq starting from 11 ± 2 GBq and the molar activity 600 ± 300 GBq/µmol at the end of synthesis.


Asunto(s)
Tomografía de Emisión de Positrones , Pirrolidinonas/síntesis química , Radioquímica/métodos , Receptor Cannabinoide CB1/metabolismo , Automatización , Pirrolidinonas/metabolismo
17.
J Cereb Blood Flow Metab ; 40(5): 1012-1020, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31142224

RESUMEN

[18F]F-DPA, a novel translocator protein 18 kDa (TSPO)-specific radioligand for imaging neuroinflammation, has to date been synthesized with low to moderate molar activities (Am's). In certain cases, low Am can skew the estimation of specific binding. The high proportion of the non-radioactive component can reduce the apparent-specific binding by competitively binding to receptors. We developed a nucleophilic synthesis of [18F]F-DPA resulting in high Am (990 ± 150 GBq/µmol) and performed in vivo comparison with low Am (9.0 ± 2.9 GBq/µmol) [18F]F-DPA in the same APP/PS1-21 and wild-type mice (injected masses: 0.34 ± 0.13 µg/kg and 38 ± 15 µg/kg, respectively). The high level of microgliosis in the APP/PS1-21 mouse model enables good differentiation between diseased and healthy animals and serves better to distinguish the effect of differing Am on specific binding. The differing injected masses affect the washout profile and shape of the time-activity curves. Ratios of standardized uptake values obtained with high and low Am [18F]F-DPA demonstrate that there is a 1.5-fold higher uptake of radioactivity in the brains of APP/PS1-21 animals when imaging is carried out with high Am [18F]F-DPA. The differences between APP/PS1-21 and wild-type animals showed higher significance when high Am was used.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Receptores de GABA/análisis , Animales , Modelos Animales de Enfermedad , Radioisótopos de Flúor , Ratones
18.
JAMA Psychiatry ; 76(10): 1074-1084, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31268519

RESUMEN

Importance: Experimental and epidemiological studies implicate the cannabinoid 1 receptor (CB1R) in the pathophysiology of psychosis. However, whether CB1R levels are altered in the early stages of psychosis and whether they are linked to cognitive function or symptom severity remain unknown. Objective: To investigate CB1R availability in first-episode psychosis (FEP) without the confounds of illness chronicity or the use of illicit substances or antipsychotics. Design, Setting, and Participants: This cross-sectional, case-control study of 2 independent samples included participants receiving psychiatric early intervention services at 2 independent centers in Turku, Finland (study 1) and London, United Kingdom (study 2). Study 1 consisted of 18 volunteers, including 7 patients with affective or nonaffective psychoses taking antipsychotic medication and 11 matched controls; study 2, 40 volunteers, including 20 antipsychotic-naive or antipsychotic-free patients with schizophrenia or schizoaffective disorder and 20 matched controls. Data were collected from January 5, 2015, through September 26, 2018, and analyzed from June 20, 2016, through February 12, 2019. Main Outcomes and Measures: The availability of CB1R was indexed using the distribution volume (VT, in milliliters per cubic centimeter) of 2 CB1R-selective positron emission tomography radiotracers: fluoride 18-labeled FMPEP-d2 (study 1) and carbon 11-labeled MePPEP (study 2). Cognitive function was measured using the Wechsler Digit Symbol Coding Test. Symptom severity was measured using the Brief Psychiatric Rating Scale for study 1 and the Positive and Negative Syndrome Scale for study 2. Results: A total of 58 male individuals were included in the analyses (mean [SD] age of controls, 27.16 [5.93] years; mean [SD] age of patients, 26.96 [4.55] years). In study 1, 7 male patients with FEP (mean [SD] age, 26.80 [5.40] years) were compared with 11 matched controls (mean [SD] age, 27.18 [5.86] years); in study 2, 20 male patients with FEP (mean [SD] age, 27.00 [5.06] years) were compared with 20 matched controls (mean [SD] age, 27.15 [6.12] years). In study 1, a significant main effect of group on [18F]FMPEP-d2 VT was found in the anterior cingulate cortex (ACC) (t16 = -4.48; P < .001; Hedges g = 1.2), hippocampus (t16 = -2.98; P = .006; Hedges g = 1.4), striatum (t16 = -4.08; P = .001; Hedges g = 1.9), and thalamus (t16 = -4.67; P < .001; Hedges g = 1.4). In study 2, a significant main effect of group on [11C]MePPEP VT was found in the ACC (Hedges g = 0.8), hippocampus (Hedges g = 0.5), striatum (Hedges g = 0.4), and thalamus (Hedges g = 0.7). In patients, [11C]MePPEP VT in the ACC was positively associated with cognitive functioning (R = 0.60; P = .01), and [11C]MePPEP VT in the hippocampus was inversely associated with Positive and Negative Syndrome Scale total symptom severity (R = -0.50; P = .02). Conclusions and Relevance: The availability of CB1R was lower in antipsychotic-treated and untreated cohorts relative to matched controls. Exploratory analyses indicated that greater reductions in CB1R levels were associated with greater symptom severity and poorer cognitive functioning in male patients. These findings suggest that CB1R may be a potential target for the treatment of psychotic disorders.


Asunto(s)
Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología , Trastornos Psicóticos/metabolismo , Trastornos Psicóticos/fisiopatología , Receptor Cannabinoide CB1/metabolismo , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatología , Adulto , Estudios de Casos y Controles , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Estudios Transversales , Humanos , Masculino , Tomografía de Emisión de Positrones , Trastornos Psicóticos/complicaciones , Trastornos Psicóticos/diagnóstico por imagen , Esquizofrenia/diagnóstico por imagen , Índice de Severidad de la Enfermedad , Adulto Joven
19.
Sci Rep ; 9(1): 5700, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30952945

RESUMEN

Back-translation of clinical imaging biomarkers of Alzheimer's disease (AD), such as alterations in cerebral glucose metabolism detected by [18F]FDG positron emission tomography (PET), would be valuable for preclinical studies evaluating new disease-modifying drugs for AD. However, previous confounding results have been difficult to interpret due to differences in mouse models and imaging protocols between studies. We used an equivalent study design and [18F]FDG µPET imaging protocol to compare changes in cerebral glucose metabolism in commercial transgenic APPSwe-PS1dE9 (n = 12), Tg2576 (n = 15), and wild-type mice (n = 15 and 9). Dynamic [18F]FDG scans were performed in young (6 months) and aged (12 or 17 months) mice and the results verified by ex vivo methods (i.e., tissue counting, digital autoradiography, and beta-amyloid and Iba-1 immunohistochemistry). [18F]FDG uptake exhibited significant regional differences between genotypes (TG < WT) and ages (6 months <12 months) in the APPSwe-PS1dE9 model, whereas similar differences were not present in Tg2576 mice. In both models, only weak correlations were detected between regional beta-amyloid deposition or microgliosis and [18F]FDG uptake. By using equivalent methodology, this study demonstrated differences in cerebral glucose metabolism dysfunction detected with [18F]FDG PET between two widely used commercial AD mouse models.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Fluorodesoxiglucosa F18/metabolismo , Factores de Edad , Enfermedad de Alzheimer/diagnóstico por imagen , Animales , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Transgénicos , Tomografía de Emisión de Positrones
20.
J Appl Physiol (1985) ; 126(6): 1756-1768, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30998125

RESUMEN

Type 2 diabetes (T2D) and increased liver fat content (LFC) alter lipoprotein profile and composition and impair liver substrate uptake. Exercise training mitigates T2D and reduces LFC, but the benefits of different training intensities in terms of lipoprotein classes and liver substrate uptake are unclear. The aim of this study was to evaluate the effects of moderate-intensity continuous training (MICT) or sprint interval training (SIT) on LFC, liver substrate uptake, and lipoprotein profile in subjects with normoglycemia or prediabetes/T2D. We randomized 54 subjects (normoglycemic group, n = 28; group with prediabetes/T2D, n = 26; age = 40-55 yr) to perform either MICT or SIT for 2 wk and measured LFC with magnetic resonance spectroscopy, lipoprotein composition with NMR, and liver glucose uptake (GU) and fatty acid uptake (FAU) using PET. At baseline, the group with prediabetes/T2D had higher LFC, impaired lipoprotein profile, and lower whole body insulin sensitivity and aerobic capacity compared with the normoglycemic group. Both training modes improved aerobic capacity (P < 0.001) and lipoprotein profile (reduced LDL and increased large HDL subclasses; all P < 0.05) with no training regimen (SIT vs. MICT) or group effect (normoglycemia vs. prediabetes/T2D). LFC tended to be reduced in the group with prediabetes/T2D compared with the normoglycemic group posttraining (P = 0.051). When subjects were divided according to LFC (high LFC, >5.6%; low LFC, <5.6%), training reduced LFC in subjects with high LFC (P = 0.009), and only MICT increased insulin-stimulated liver GU (P = 0.03). Short-term SIT and MICT are effective in reducing LFC in subjects with fatty liver and in improving lipoprotein profile regardless of baseline glucose tolerance. Short-term MICT is more efficient in improving liver insulin sensitivity compared with SIT. NEW & NOTEWORTHY In the short term, both sprint interval training and moderate-intensity continuous training (MICT) reduce liver fat content and improve lipoprotein profile; however, MICT seems to be preferable in improving liver insulin sensitivity.


Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Hígado Graso/terapia , Entrenamiento de Intervalos de Alta Intensidad , Lipoproteínas/sangre , Hígado/metabolismo , Adulto , Diabetes Mellitus Tipo 2/metabolismo , Hígado Graso/sangre , Femenino , Humanos , Metabolismo de los Lípidos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...