Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Oncoimmunology ; 13(1): 2388304, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135889

RESUMEN

The Hodgkin and Reed - Sternberg (HRS) cells in classical Hodgkin Lymphoma (cHL) actively modify the immune tumor microenvironment (TME) attracting immunosuppressive cells and expressing inhibitory molecules. A high frequency of myeloid cells in the TME is correlated with an unfavorable prognosis, but more specific and rare cell populations lack precise markers. Myeloid-derived suppressor cells (MDSCs) have been identified in the peripheral blood of cHL patients, where they appear to be correlated with disease aggressiveness. TNFRSF9 (CD137) is a T cell co-stimulator expressed by monocytic and dendritic cells. Its expression has also been described in HRS cells, where it is thought to play a role in reducing antitumor responses. Here, we perform qualitative and quantitative analyses of lymphocytic and MDSC subtypes and determine the CD137 cell distribution in cHL primary tumors using multiplex immunofluorescence and automated multispectral imaging. The results were correlated with patients' clinical features. Cells were stained with specific panels of immune checkpoint markers (PD-1, PD-L1, CD137), tumor-infiltrating T lymphocytes (CD3, PD-1), and monocytic cells/MDSCs (CD68, CD14, CD33, Arg-1, CD11b). This approach allowed us to identify distinct phenotypes and to analyze spatial interactions between immune subpopulations and tumor cells. The results confirm CD137 expression by T, monocytic and HRS cells. In addition, the expression of CD137, T exhausted cells, and monocytic MDSCs (m-MDSCs) in the vicinity of malignant HRS cells were associated with a worse prognosis. Our findings reveal new elements of the TME that mediate immune escape, and confirm CD137 as a candidate target for immunotherapy in cHL.


CD137-expressing immune cells and HRS cells are more abundant and in closer proximity in refractory patients than in responders.Monocytic myeloid-derived suppressor cells (m-MDSCs) are associated with unfavorable outcomes and relapse in cHL, unlike granulocytic MDSCs (g-MDSCs), which are located far from HRS cells in non-responders.The cHL tumor microenvironment promotes immune escape in refractory patients by holistically driving polarization and/or recruitment of several cell types with increased expression of CD137 and PD-L1 checkpoints.


Asunto(s)
Enfermedad de Hodgkin , Células Supresoras de Origen Mieloide , Células de Reed-Sternberg , Microambiente Tumoral , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral , Humanos , Enfermedad de Hodgkin/patología , Enfermedad de Hodgkin/inmunología , Enfermedad de Hodgkin/metabolismo , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Microambiente Tumoral/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/patología , Femenino , Masculino , Adulto , Persona de Mediana Edad , Células de Reed-Sternberg/patología , Células de Reed-Sternberg/metabolismo , Anciano , Análisis Espacial , Adulto Joven , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Adolescente , Pronóstico , Biomarcadores de Tumor/metabolismo
2.
iScience ; 27(6): 110096, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38957791

RESUMEN

Recent developments in immunotherapy, including immune checkpoint blockade (ICB) and adoptive cell therapy (ACT), have encountered challenges such as immune-related adverse events and resistance, especially in solid tumors. To advance the field, a deeper understanding of the molecular mechanisms behind treatment responses and resistance is essential. However, the lack of functionally characterized immune-related gene sets has limited data-driven immunological research. To address this gap, we adopted non-negative matrix factorization on 83 human bulk RNA sequencing (RNA-seq) datasets and constructed 28 immune-specific gene sets. After rigorous immunologist-led manual annotations and orthogonal validations across immunological contexts and functional omics data, we demonstrated that these gene sets can be applied to refine pan-cancer immune subtypes, improve ICB response prediction and functionally annotate spatial transcriptomic data. These functional gene sets, informing diverse immune states, will advance our understanding of immunology and cancer research.

3.
Res Sq ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38798564

RESUMEN

Studying lung adenocarcinoma (LUAD) early carcinogenesis is challenging, primarily due to the lack of LUAD precursors specimens. We amassed multi-omics data from 213 LUAD and LUAD precursors to identify molecular features underlying LUAD precancer evolution. We observed progressively increasing mutations, chromosomal aberrations, whole genome doubling and genomic instability from precancer to invasive LUAD, indicating aggravating chromosomal instability (CIN). Telomere shortening, a crucial genomic alteration linked to CIN, emerged at precancer stage. Moreover, later-stage lesions demonstrated increasing cancer stemness and decreasing alveolar identity, suggesting epithelial de-differentiation during early LUAD carcinogenesis. The innate immune cells progressively diminished from precancer to invasive LUAD, concomitant with a gradual recruitment of adaptive immune cells (except CD8+ and gamma-delta T cells that decreased in later stages) and upregulation of numerous immune checkpoints, suggesting LUAD precancer evolution is associated with a shift from innate to adaptive immune response and immune evasion mediated by various mechanisms.

4.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798470

RESUMEN

Recent developments in immunotherapy, including immune checkpoint blockade (ICB) and adoptive cell therapy, have encountered challenges such as immune-related adverse events and resistance, especially in solid tumors. To advance the field, a deeper understanding of the molecular mechanisms behind treatment responses and resistance is essential. However, the lack of functionally characterized immune-related gene sets has limited data-driven immunological research. To address this gap, we adopted non-negative matrix factorization on 83 human bulk RNA-seq datasets and constructed 28 immune-specific gene sets. After rigorous immunologist-led manual annotations and orthogonal validations across immunological contexts and functional omics data, we demonstrated that these gene sets can be applied to refine pan-cancer immune subtypes, improve ICB response prediction and functionally annotate spatial transcriptomic data. These functional gene sets, informing diverse immune states, will advance our understanding of immunology and cancer research.

6.
Sci Signal ; 17(826): eadh4475, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38442201

RESUMEN

The translation elongation factor eEF1A promotes protein synthesis. Its methylation by METTL13 increases its activity, supporting tumor growth. However, in some cancers, a high abundance of eEF1A isoforms is associated with a good prognosis. Here, we found that eEF1A2 exhibited oncogenic or tumor-suppressor functions depending on its interaction with METTL13 or the phosphatase PTEN, respectively. METTL13 and PTEN competed for interaction with eEF1A2 in the same structural domain. PTEN-bound eEF1A2 promoted the ubiquitination and degradation of the mitosis-promoting Aurora kinase A in the S and G2 phases of the cell cycle. eEF1A2 bridged the interactions between the SKP1-CUL1-FBXW7 (SCF) ubiquitin ligase complex, the kinase GSK3ß, and Aurora-A, thereby facilitating the phosphorylation of Aurora-A in a degron site that was recognized by FBXW7. Genetic ablation of Eef1a2 or Pten in mice resulted in a greater abundance of Aurora-A and increased cell cycling in mammary tumors, which was corroborated in breast cancer tissues from patients. Reactivating this pathway using fimepinostat, which relieves inhibitory signaling directed at PTEN and increases FBXW7 expression, combined with inhibiting Aurora-A with alisertib, suppressed breast cancer cell proliferation in culture and tumor growth in vivo. The findings demonstrate a therapeutically exploitable, tumor-suppressive role for eEF1A2 in breast cancer.


Asunto(s)
Aurora Quinasa A , Neoplasias de la Mama , Neoplasias Mamarias Animales , Fosfohidrolasa PTEN , Factor 1 de Elongación Peptídica , Animales , Femenino , Humanos , Ratones , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Glucógeno Sintasa Quinasa 3 beta , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/metabolismo , Neoplasias Mamarias Animales/patología , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Factor 1 de Elongación Peptídica/genética , Factor 1 de Elongación Peptídica/metabolismo
7.
JTO Clin Res Rep ; 5(2): 100623, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38357092

RESUMEN

Introduction: NSCLC transformation to SCLC has been best characterized with EGFR-mutant NSCLC, with emerging case reports seen in ALK, RET, and KRAS-altered NSCLC. Previous reports revealed transformed SCLC from EGFR-mutant NSCLC portends very poor prognosis and lack effective treatment. Genomic analyses revealed TP53 and RB1 loss of function increase the risk of SCLC transformation. Little has been reported on the detailed clinicogenomic characteristics and potential therapeutic targets for this patient population. Methods: In this study, we conducted a single-center retrospective analysis of clinical and genomic characteristics of patients with EGFR-mutant NSCLC transformed to SCLC. Demographic data, treatment course, and clinical molecular testing reports were extracted from electronic medical records. Kaplan-Meier analyses were used to estimate survival outcomes. Next generation sequencing-based assays was used to identify EGFR and co-occurring genetic alterations in tissue or plasma before and after SCLC transformation. Single-cell RNA sequencing (scRNA-seq) was performed on a patient-derived-xenograft model generated from a patient with EGFR-NSCLC transformed SCLC tumor. Results: A total of 34 patients were identified in our study. Median age at initial diagnosis was 58, and median time to SCLC transformation was 24.2 months. 68% were female and 82% were never smokers. 79% of patients were diagnosed as stage IV disease, and over half had brain metastases at baseline. Median overall survival of the entire cohort was 38.3 months from initial diagnoses and 12.4 months from time of SCLC transformation. Most patients harbored EGFR exon19 deletions as opposed to exon21 L858R alteration. Continuing EGFR tyrosine kinase inhibitor post-transformation did not improve overall survival compared with those patients where tyrosine kinase inhibitor was stopped in our cohort. In the 20 paired pretransformed and post-transformed patient samples, statistically significant enrichment was seen with PIK3CA alterations (p = 0.04) post-transformation. Profiling of longitudinal liquid biopsy samples suggest emergence of SCLC genetic alterations before biopsy-proven SCLC, as shown by increasing variant allele frequency of TP53, RB1, PIK3CA alterations. ScRNA-seq revealed potential therapeutic targets including DLL3, CD276 (B7-H3) and PTK7 were widely expressed in transformed SCLC. Conclusions: SCLC transformation is a potential treatment resistance mechanism in driver-mutant NSCLC. In our cohort of 34 EGFR-mutant NSCLC, poor prognosis was observed after SCLC transformation. Clinicogenomic analyses of paired and longitudinal samples identified genomic alterations emerging post-transformation and scRNA-seq reveal potential therapeutic targets in this population. Further studies are needed to rigorously validate biomarkers and therapeutic targets for this patient population.

8.
Nature ; 627(8004): 656-663, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418883

RESUMEN

Understanding the cellular processes that underlie early lung adenocarcinoma (LUAD) development is needed to devise intervention strategies1. Here we studied 246,102 single epithelial cells from 16 early-stage LUADs and 47 matched normal lung samples. Epithelial cells comprised diverse normal and cancer cell states, and diversity among cancer cells was strongly linked to LUAD-specific oncogenic drivers. KRAS mutant cancer cells showed distinct transcriptional features, reduced differentiation and low levels of aneuploidy. Non-malignant areas surrounding human LUAD samples were enriched with alveolar intermediate cells that displayed elevated KRT8 expression (termed KRT8+ alveolar intermediate cells (KACs) here), reduced differentiation, increased plasticity and driver KRAS mutations. Expression profiles of KACs were enriched in lung precancer cells and in LUAD cells and signified poor survival. In mice exposed to tobacco carcinogen, KACs emerged before lung tumours and persisted for months after cessation of carcinogen exposure. Moreover, they acquired Kras mutations and conveyed sensitivity to targeted KRAS inhibition in KAC-enriched organoids derived from alveolar type 2 (AT2) cells. Last, lineage-labelling of AT2 cells or KRT8+ cells following carcinogen exposure showed that KACs are possible intermediates in AT2-to-tumour cell transformation. This study provides new insights into epithelial cell states at the root of LUAD development, and such states could harbour potential targets for prevention or intervention.


Asunto(s)
Adenocarcinoma del Pulmón , Diferenciación Celular , Células Epiteliales , Neoplasias Pulmonares , Animales , Humanos , Ratones , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Aneuploidia , Carcinógenos/toxicidad , Células Epiteliales/clasificación , Células Epiteliales/metabolismo , Células Epiteliales/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Organoides/efectos de los fármacos , Organoides/metabolismo , Lesiones Precancerosas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Tasa de Supervivencia , Productos de Tabaco/efectos adversos , Productos de Tabaco/toxicidad
9.
Virchows Arch ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388965

RESUMEN

Acute myeloid leukemia (AML) is the most common acute leukemia in adults. While induction chemotherapy leads to remission in most patients, a significant number will experience relapse. Therefore, there is a need for novel therapies that can improve remission rates in patients with relapsed and refractory AML. CD70 is the natural ligand for CD27 (a member of the TNF superfamily) and appears to be a promising therapeutic target. Consequently, there is considerable interest in developing chimeric antigen receptor (CAR) T-cell therapy products that can specifically target CD70 in various neoplasms, including AML. In this study, we employed routine diagnostic techniques, such as immunohistochemistry and flow cytometry, to investigate the expression of CD70 in bone marrow samples from treatment-naïve and relapsed AML patients after hypomethylating agents (HMA). Also, we evaluated the impact of HMA on CD70 expression and examined CD70 expression in various leukemic cell subsets and normal hematopoietic progenitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...